Neural Networks Classification for Training of Five German Longsword Mastercuts - A Novel Application of Motion Capture: Analysis of Performance of Sword Fencing in the Historical European Martial Arts (HEMA) Domain

This paper discusses an application of motion capture in longsword fencing, a discipline experiencing rising popularity since the 1990s. Historical European Martial Arts alliance focuses on re-enacting the Late Middle Ages and Renaissance fighting styles. To popularize this art, novel research to au...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI) pp. 000137 - 000142
Main Authors Klempous, Ryszard, Kluwak, Konrad, Atsushi, Ito, Gorski, Tomasz, Nikodem, Jan, Bozejko, Wojciech, Chaczko, Zenon, Borowik, Grzegorz, Rozenblit, Jerzy, Kulbacki, Marek
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper discusses an application of motion capture in longsword fencing, a discipline experiencing rising popularity since the 1990s. Historical European Martial Arts alliance focuses on re-enacting the Late Middle Ages and Renaissance fighting styles. To popularize this art, novel research to automatically distinguish selected sword cutting techniques has been conducted. The fencing knowledge required for conducting this research was based on publications and consultation with experts in the field, and recordings. For this research, different movements from Masterstrikes such as Zornhau (Strike of Wrath), Schielhau (Squinting Strike), Zwerchhau (Cross Strike), Krumphau (Crooked Strike), Scheitelhau (Crown Strike) were selected. Motions performed by an adept fencer (acting expert) were used as patterns of correct strikes and compared with the movements of fencing amateurs. The main goal of this research was to measure the precision of movement while performing five different fencing strokes. Each movement was recorded with 39 unique full-body plug-in gait configurations initially designed for medical applications. During the exercise, 16 EMG electrodes configuration was used for the measurement of muscle activity.
AbstractList This paper discusses an application of motion capture in longsword fencing, a discipline experiencing rising popularity since the 1990s. Historical European Martial Arts alliance focuses on re-enacting the Late Middle Ages and Renaissance fighting styles. To popularize this art, novel research to automatically distinguish selected sword cutting techniques has been conducted. The fencing knowledge required for conducting this research was based on publications and consultation with experts in the field, and recordings. For this research, different movements from Masterstrikes such as Zornhau (Strike of Wrath), Schielhau (Squinting Strike), Zwerchhau (Cross Strike), Krumphau (Crooked Strike), Scheitelhau (Crown Strike) were selected. Motions performed by an adept fencer (acting expert) were used as patterns of correct strikes and compared with the movements of fencing amateurs. The main goal of this research was to measure the precision of movement while performing five different fencing strokes. Each movement was recorded with 39 unique full-body plug-in gait configurations initially designed for medical applications. During the exercise, 16 EMG electrodes configuration was used for the measurement of muscle activity.
Author Klempous, Ryszard
Rozenblit, Jerzy
Chaczko, Zenon
Borowik, Grzegorz
Nikodem, Jan
Kluwak, Konrad
Atsushi, Ito
Kulbacki, Marek
Gorski, Tomasz
Bozejko, Wojciech
Author_xml – sequence: 1
  givenname: Ryszard
  orcidid: 0000-0003-4889-0930
  surname: Klempous
  fullname: Klempous, Ryszard
  email: ryszard.klempous@pwr.edu.pl
  organization: Wroclaw University of Science and Technology,Department of Control Systems and Mechatronics,Wroclaw,Poland
– sequence: 2
  givenname: Konrad
  orcidid: 0000-0003-0983-2228
  surname: Kluwak
  fullname: Kluwak, Konrad
  email: konrad.kluwak@pwr.edu.pl
  organization: Wroclaw University of Science and Technology,Department of Control Systems and Mechatronics,Wroclaw,Poland
– sequence: 3
  givenname: Ito
  orcidid: 0000-0002-9686-4019
  surname: Atsushi
  fullname: Atsushi, Ito
  email: atc.00s@g.chuo-u.ac.jp
  organization: Chuo University,Faculty of Economics,Tokyo,Japan
– sequence: 4
  givenname: Tomasz
  orcidid: 0000-0002-8393-1585
  surname: Gorski
  fullname: Gorski, Tomasz
  email: t.gorski@amw.gdynia.pl
  organization: Polish Naval Academy,Gdynia,Poland
– sequence: 5
  givenname: Jan
  orcidid: 0000-0002-3748-9255
  surname: Nikodem
  fullname: Nikodem, Jan
  email: jan.nikodem@pwr.wroc.pl
  organization: Wroclaw University of Science and Technology,Department of Computer Engineering,Wroclaw,Poland
– sequence: 6
  givenname: Wojciech
  orcidid: 0000-0002-1868-8603
  surname: Bozejko
  fullname: Bozejko, Wojciech
  email: wojciech.bozejko@pwr.edu.pl
  organization: University of Technology Sydney,School of Electrical and Data Engineering,Sydney,Australia
– sequence: 7
  givenname: Zenon
  orcidid: 0000-0002-2816-7510
  surname: Chaczko
  fullname: Chaczko, Zenon
  email: zenon.chaczko@uts.edu.au
  organization: SWPS University of Social Sciences and Humanities,Warsaw,Poland
– sequence: 8
  givenname: Grzegorz
  orcidid: 0000-0003-4148-4817
  surname: Borowik
  fullname: Borowik, Grzegorz
  email: borowik.grzegorz@gmail.com
  organization: Wroclaw University of Science and Technology,Department of Control Systems and Mechatronics,Wroclaw,Poland
– sequence: 9
  givenname: Jerzy
  orcidid: 0000-0002-7348-4128
  surname: Rozenblit
  fullname: Rozenblit, Jerzy
  email: jerzyr@arizona.edu
  organization: University of Arizona,Department of Electrical and Computer Engineering,Tucson,USA
– sequence: 10
  givenname: Marek
  orcidid: 0000-0003-4609-106X
  surname: Kulbacki
  fullname: Kulbacki, Marek
  email: kulbacki@pjwstk.edu.pl
  organization: R&D Center Polish-Japanese Academy of Information Technology,Warsaw
BookMark eNo1kc1u2zAMx9ViBdavJ-ihPLYHZ5JsyfZuhps0AZJsQNNzITtUq82RDElp0Sfd60zpOoAAv8DfnyDPyBfrLBJyzeiEMVp_axfrzULktKQTTjmb1FJWoq6OyBmTUhRcVoU4Jqe8KFlWc1l_JZch_KKUMsmSiVPyZ417rwZYY3xz_neAdlAhGG16FY2zoJ2HjVfGGvsMTsPMvCLco98pC0tnn0Oa2sJKhYi-38cAGTSwdq84QDOOw39Mmly5j6hVY9x7_A6NVcN7MOHQ-4k-CSVmj4f04QM6Q9sfVI2F-IIwNyE6n4ADTPfejZg2WCkfTSo0PinfzKer5hbu3C6te0FOtBoCXn76c_I4m27aebb8cb9om2VmOM1jxjUtVC7rUqmedrwrS1VJnoue0zLvtul8okDNsahLKistOqm3rNhy1fW9qHWVn5Orf1yDiE-jNzvl358-_5D_BXALgoM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CINTI53070.2021.9668598
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Computer Science
EISBN 1665426845
9781665426848
EISSN 2471-9269
EndPage 000142
ExternalDocumentID 9668598
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-2f04a3697aac0b2b77a86235c2073bd84554ef2e497068f5b6fd14d2abcc59f83
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:38 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-2f04a3697aac0b2b77a86235c2073bd84554ef2e497068f5b6fd14d2abcc59f83
ORCID 0000-0002-3748-9255
0000-0003-0983-2228
0000-0002-2816-7510
0000-0003-4889-0930
0000-0002-1868-8603
0000-0003-4148-4817
0000-0003-4609-106X
0000-0002-8393-1585
0000-0002-9686-4019
0000-0002-7348-4128
PageCount 6
ParticipantIDs ieee_primary_9668598
PublicationCentury 2000
PublicationDate 2021-Nov.-18
PublicationDateYYYYMMDD 2021-11-18
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.-18
  day: 18
PublicationDecade 2020
PublicationTitle 2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)
PublicationTitleAbbrev CINTI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001611615
Score 1.832111
Snippet This paper discusses an application of motion capture in longsword fencing, a discipline experiencing rising popularity since the 1990s. Historical European...
SourceID ieee
SourceType Publisher
StartPage 000137
SubjectTerms 5 German Longsword Mastercuts
Electrodes
Europe
Forestry
Historical European Martial Arts (HEMA)
Human motion database
Human motion lab
k-Nearest Neighbors
Kendo
Medical services
Motion analysis
Movement classification
Multi-layer perceptron
Naïve Bayes classifier
Neural networks
Neutral Networks
PCA
Random Forest
Training
Title Neural Networks Classification for Training of Five German Longsword Mastercuts - A Novel Application of Motion Capture: Analysis of Performance of Sword Fencing in the Historical European Martial Arts (HEMA) Domain
URI https://ieeexplore.ieee.org/document/9668598
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qQTz5xjdz8KBg17bbR-JtWV1XsYvgCt4kSRNZ1Fa068E_6t9xJtu1KB68tQmTBDJJJpmZ72NsP5IqjxIrvUSkFi8ogfR4kEpP-9ZoQyQiDmIjGyT92-jyLr6bYUffuTDGGBd8Zlr06Xz5eanH9FR2jKY5jwWfZbOpEJNcreY9JQnIeKlDuAJfHHcvBsOLmHQar4Fh0Kqlf9CouFOkt8iyaf-T4JHH1rhSLf3xC5rxvwNcYmtNvh5cf59Ey2zGFCtscUrYAPX6XWHzRMRJ7G6r7JNQOeQTDCZh4G_g2DEpbshNFaAtC8OaPgJKCz3cFeGctvECrsrigWILc8gk4SzocfUGHnRgUL6bJ-g0PnGSzBxPEHTlCzkrTmAKg0J1103aAv3euEZp4VCvowLQOoUGyASmrgNw4AdY0HnFng_6Z1nnEE7LZxzuGrvtnQ27fa8mefBGod-uvND6kWyjpkipfRWqNJV4yWrHOsTNR-U8QnvH2NBEIvUTbmOV2DyI8lAqrWNheXudzRVlYTYYcIFSQsvQoE0bByjLFbYcKZsqVDm9yVZpyu5fJjge9_Vsbf1dvM0WSG0o7zDgO2yueh2bXTRAKrXnNO8LTkjeHg
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RKrU9QYGKlkLn0EMrNUuSzcPhtlrY7rabCKmLxG1lOzZC0ARBlgN_lL_TGW-WqKiH3vKQH5LH9mfPzPcBfI6kKqPESi_JUksHlEB6Ikilp31rtGEREUexkRfJ-Cz6cR6fr8G3p1wYY4wLPjM9fnS-_LLWC74qOyRoLuJMvICXhKtFsszW6m5UkoDhSxvEFfjZ4XBSzCYxWzUdBMOg15b_S0jF7SOjDchXPViGj1z1Fo3q6Ydn5Iz_28VN2Oky9vD0aS96C2um2oKNlWQDtjN4C16xFCfru23DI_NyyGssloHgd-j0MTlyyA0WEprFWSsggbXFEa2L-J0X8gqndXXB0YUl5pKZFvSiuUMPB1jU9-YaB51XnEvmTikIh_KG3RVHuCJC4X-nXeICv_5ylfLU4VYvKyR8ih2VCa6cB-joD-jD4JZa_jI-yQdf8bj-Td3dgbPRyWw49lqZB-8y9PuNF1o_kn2yFSm1r0KVppKOWf1Yh7T8qFJEhHiMDU2UpX4ibKwSWwZRGUqldZxZ0X8H61VdmV1AkVGpTMvQEKqNAyorFNUcKZsqMjr9HrZ5yOY3SyaPeTtaH_79-RO8Hs_y6Xw6KX7uwRs2Ic5CDMRHWG9uF2af4EijDpwV_gEKdeFp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2021+IEEE+21st+International+Symposium+on+Computational+Intelligence+and+Informatics+%28CINTI%29&rft.atitle=Neural+Networks+Classification+for+Training+of+Five+German+Longsword+Mastercuts+-+A+Novel+Application+of+Motion+Capture%3A+Analysis+of+Performance+of+Sword+Fencing+in+the+Historical+European+Martial+Arts+%28HEMA%29+Domain&rft.au=Klempous%2C+Ryszard&rft.au=Kluwak%2C+Konrad&rft.au=Atsushi%2C+Ito&rft.au=Gorski%2C+Tomasz&rft.date=2021-11-18&rft.pub=IEEE&rft.eissn=2471-9269&rft.spage=000137&rft.epage=000142&rft_id=info:doi/10.1109%2FCINTI53070.2021.9668598&rft.externalDocID=9668598