Complex Stiffness Model of Physical Human-Robot Interaction: Implications for Control of Performance Augmentation Exoskeletons

Human joint dynamic stiffness plays an important role in the stability of performance augmentation exoskeletons. In this paper, we consider a new frequency domain model of the human joint dynamics which features a complex value stiffness. This complex stiffness consists of a real stiffness and a hys...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) pp. 6748 - 6755
Main Authors He, Binghan, Huang, Huang, Thomas, Gray C., Sentis, Luis
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2019
Online AccessGet full text

Cover

Loading…
Abstract Human joint dynamic stiffness plays an important role in the stability of performance augmentation exoskeletons. In this paper, we consider a new frequency domain model of the human joint dynamics which features a complex value stiffness. This complex stiffness consists of a real stiffness and a hysteretic damping. We use it to explain the dynamic behaviors of the human connected to the exoskeleton, in particular the observed non-zero low frequency phase shift and the near constant damping ratio of the resonance as stiffness and inertia vary. We validate this concept with an elbow-joint exoskeleton testbed (attached to a subject) by experimentally varying joint stiffness behavior, exoskeleton inertia, and the strength augmentation gain. We compare three different models of elbow-joint dynamic stiffness: a model with real stiffness, viscous damping and inertia; a model with complex stiffness and inertia; and a model combining the previous two models. Our results show that the hysteretic damping term improves modeling accuracy (via a statistical F-test). Moreover, this term contributes more to model accuracy than the viscous damping term. In addition, we experimentally observe a linear relationship between the hysteretic damping and the real part of the stiffness which allows us to simplify the complex stiffness model down to a 1-parameter system. Ultimately, we design a fractional order controller to demonstrate how human hysteretic damping behavior can be exploited to improve strength amplification performance while maintaining stability.
AbstractList Human joint dynamic stiffness plays an important role in the stability of performance augmentation exoskeletons. In this paper, we consider a new frequency domain model of the human joint dynamics which features a complex value stiffness. This complex stiffness consists of a real stiffness and a hysteretic damping. We use it to explain the dynamic behaviors of the human connected to the exoskeleton, in particular the observed non-zero low frequency phase shift and the near constant damping ratio of the resonance as stiffness and inertia vary. We validate this concept with an elbow-joint exoskeleton testbed (attached to a subject) by experimentally varying joint stiffness behavior, exoskeleton inertia, and the strength augmentation gain. We compare three different models of elbow-joint dynamic stiffness: a model with real stiffness, viscous damping and inertia; a model with complex stiffness and inertia; and a model combining the previous two models. Our results show that the hysteretic damping term improves modeling accuracy (via a statistical F-test). Moreover, this term contributes more to model accuracy than the viscous damping term. In addition, we experimentally observe a linear relationship between the hysteretic damping and the real part of the stiffness which allows us to simplify the complex stiffness model down to a 1-parameter system. Ultimately, we design a fractional order controller to demonstrate how human hysteretic damping behavior can be exploited to improve strength amplification performance while maintaining stability.
Author Sentis, Luis
Thomas, Gray C.
Huang, Huang
He, Binghan
Author_xml – sequence: 1
  givenname: Binghan
  surname: He
  fullname: He, Binghan
  organization: University of Texas at Austin,The Departments of Mechanical Engineering (B.H., H.H., G.C.T.) and Aerospace Engineering (L.S.),Austin,TX
– sequence: 2
  givenname: Huang
  surname: Huang
  fullname: Huang, Huang
  organization: University of Texas at Austin,The Departments of Mechanical Engineering (B.H., H.H., G.C.T.) and Aerospace Engineering (L.S.),Austin,TX
– sequence: 3
  givenname: Gray C.
  surname: Thomas
  fullname: Thomas, Gray C.
  organization: University of Texas at Austin,The Departments of Mechanical Engineering (B.H., H.H., G.C.T.) and Aerospace Engineering (L.S.),Austin,TX
– sequence: 4
  givenname: Luis
  surname: Sentis
  fullname: Sentis, Luis
  organization: University of Texas at Austin,The Departments of Mechanical Engineering (B.H., H.H., G.C.T.) and Aerospace Engineering (L.S.),Austin,TX
BookMark eNotkNFOwjAUhqvRRECewMT0BYan3dZ13pEFZQkGA3pNSneq060la0ngxmd3Clcn_5_v-y_OkFxZZ5GQewYTxiB_KFfLdQIyzyYcWD6RuZAA6QUZsoxLlgAk8pIMOEvjCKQQN2Ts_RcAMMjyHh6Qn8K1uwYPdB1qYyx6T19chQ11hr5-Hn2tVUPn-1bZaOW2LtDSBuyUDrWzj7Ts3Z74C54a19HC2dC5k41d3_SiRjrdf7Rowz9IZwfnv7HB0Eu35NqoxuP4fEfk_Wn2VsyjxfK5LKaLqOYQh4gjNxIzLYTJ8oqpJMOES12JlPFKp1pgmqJWIuPpVqGsDG5TyBXnEmIjJcYjcnfarRFxs-vqVnXHzfld8S_7HmSZ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS40897.2019.8968005
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728140048
9781728140049
EISSN 2153-0866
EndPage 6755
ExternalDocumentID 8968005
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-2e2f8e7c66f79d1a47e428cd6512dc5c6e55eca6725bae8dfeb509a22803f88e3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:27:24 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-2e2f8e7c66f79d1a47e428cd6512dc5c6e55eca6725bae8dfeb509a22803f88e3
PageCount 8
ParticipantIDs ieee_primary_8968005
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
PublicationTitleAbbrev IROS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.2096753
Snippet Human joint dynamic stiffness plays an important role in the stability of performance augmentation exoskeletons. In this paper, we consider a new frequency...
SourceID ieee
SourceType Publisher
StartPage 6748
Title Complex Stiffness Model of Physical Human-Robot Interaction: Implications for Control of Performance Augmentation Exoskeletons
URI https://ieeexplore.ieee.org/document/8968005
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6Qk178AON3evDoYN9tvRkCAROUgCTcyNq9NQTYjGwJ8eBvt-0moPHgrdnSbOnH3mdvn-d5Ebr1PUGELQJLaNmyz32wmB07lnD0KZSrQj7R2uH-U9gd-4-TYFJBdxstDAAY8hk0dNOc5cepyHWqrElZSI1h6R5hrNBqbfMpNmHqfikCdmzW7A2fR75NGdEELrUiis4_qqiYINI5RP3vxxfckXkjz3hDfPxyZvzv-x2h-lauhwebQHSMKpCcoIMdp8Ea-tT7fgFrPMpmUurPG9ZV0BY4lXhQThU2CX1rmPI0wyZTWIge7nFvh3aOFcrFrYLgbnpvlQf4IX9dllqmBLfX6WqugpoCl6s6GnfaL62uVZZesGau7WWWC66kQEQYSsJiJ_IJqP8UEYcKH8QiECEEAYgoJG7AI6CxBK6QR6S9dTxJKXinqJqkCZwhzIBIIYTkEGt3N2DgascgoJFqBQ4_RzU9ktO3wl1jWg7ixd-XL9G-ns1CDXiFqtl7DtcKFmT8xqyHL4DQuvw
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGG0IPqgvXsB4tw8-Oti17XwzBAIKSLgkvJG1-2oIuBkZCfHB3267TUDjg2_NsiZNL_vOvp5zPoRuXUdQYQrPEFq27HIXDN8MLUNY-hbKViGfau1wp0uaI_dx7I0L6G6thQGAlHwGFd1M7_LDWCx1qqzKfMJSw9IdhasZydRam4yKSX31Ri4Dtky_2uo_D1yT-VRTuNSeyLr_qKOShpHGAep8DyBjj8wqy4RXxMcvb8b_jvAQlTeCPdxbh6IjVIDoGO1veQ2W0Kc--XNY4UEylVJ_4LCugzbHscS9fLFwmtI3-jGPE5zmCjPZwz1ubRHPscK5uJZR3NPeG-0Bfli-vOZqpgjXV_FipsKagpeLMho16sNa08iLLxhT23QSwwZbMqCCEEn90ApcCupPRYREIYRQeIKA54EICLU9HgALJXCFPQLtruNIxsA5QcUojuAUYR-oFEJIDqH2dwMfbO0ZBCxQLc_iZ6ikZ3LylvlrTPJJPP_78Q3abQ477Um71X26QHt6ZTNt4CUqJu9LuFIgIeHX6d74Am1zvkc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2019+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems+%28IROS%29&rft.atitle=Complex+Stiffness+Model+of+Physical+Human-Robot+Interaction%3A+Implications+for+Control+of+Performance+Augmentation+Exoskeletons&rft.au=He%2C+Binghan&rft.au=Huang%2C+Huang&rft.au=Thomas%2C+Gray+C.&rft.au=Sentis%2C+Luis&rft.date=2019-11-01&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=6748&rft.epage=6755&rft_id=info:doi/10.1109%2FIROS40897.2019.8968005&rft.externalDocID=8968005