Bandit Learning with Predicted Context: Regret Analysis and Selective Context Query
Contextual bandit learning selects actions (i.e., arms) based on context information to maximize rewards while balancing exploitation and exploration. In many applications (e.g., cloud resource management with dynamic workloads), before arm selection, the agent/learner can either predict context inf...
Saved in:
Published in | Annual Joint Conference of the IEEE Computer and Communications Societies pp. 1 - 10 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
10.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2641-9874 |
DOI | 10.1109/INFOCOM42981.2021.9488896 |
Cover
Abstract | Contextual bandit learning selects actions (i.e., arms) based on context information to maximize rewards while balancing exploitation and exploration. In many applications (e.g., cloud resource management with dynamic workloads), before arm selection, the agent/learner can either predict context information online based on context history or selectively query the context from an outside expert. Motivated by this practical consideration, we study a novel contextual bandit setting where context information is either predicted online or queried from an expert. First, considering predicted context only, we quantify the impact of context prediction on the cumulative regret (compared to an oracle with perfect context information) by deriving an upper bound on regret, which takes the form of a weighted combination of regret incurred by standard bandit learning and the context prediction error. Then, inspired by the regret's structural decomposition, we propose context query algorithms to selectively obtain outside expert's input (subject to a total query budget) for more accurate context, decreasing the overall regret. Finally, we apply our algorithms to virtual machine scheduling on cloud platforms. The simulation results validate our regret analysis and shows the effectiveness of our selective context query algorithms. |
---|---|
AbstractList | Contextual bandit learning selects actions (i.e., arms) based on context information to maximize rewards while balancing exploitation and exploration. In many applications (e.g., cloud resource management with dynamic workloads), before arm selection, the agent/learner can either predict context information online based on context history or selectively query the context from an outside expert. Motivated by this practical consideration, we study a novel contextual bandit setting where context information is either predicted online or queried from an expert. First, considering predicted context only, we quantify the impact of context prediction on the cumulative regret (compared to an oracle with perfect context information) by deriving an upper bound on regret, which takes the form of a weighted combination of regret incurred by standard bandit learning and the context prediction error. Then, inspired by the regret's structural decomposition, we propose context query algorithms to selectively obtain outside expert's input (subject to a total query budget) for more accurate context, decreasing the overall regret. Finally, we apply our algorithms to virtual machine scheduling on cloud platforms. The simulation results validate our regret analysis and shows the effectiveness of our selective context query algorithms. |
Author | Yang, Jianyi Ren, Shaolei |
Author_xml | – sequence: 1 givenname: Jianyi surname: Yang fullname: Yang, Jianyi organization: University of California,Riverside – sequence: 2 givenname: Shaolei surname: Ren fullname: Ren, Shaolei organization: University of California,Riverside |
BookMark | eNo1kM1OAjEUhavRRECewE19gMHbn2l73eFElARFRddkaC9Yg8XM1B_eXhJxdRbnO9_idNlR2iRi7FzAQAjAi_H9aFpN77REJwYSpBigds6hOWB9tE4YU2pQspSHrCONFgU6q09Yt23fAMBZaTpsdlWnEDOfUN2kmFb8O-ZX_tBQiD5T4NUmZfrJl_yJVg1lPkz1etvGlu9mfEZr8jl-0T_GHz-p2Z6y42W9bqm_zx57GV0_V7fFZHozroaTIkpQuZAetNXo9UJ6gQKVtQpCrTE47xYBSh-CMVJqADS469B7pUrlbLBiWSrVY2d_3khE848mvtfNdr7_QP0CXm9SxQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/INFOCOM42981.2021.9488896 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digtal Library (IEEE/IET Electronic Library-IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781665403252 166540325X |
EISSN | 2641-9874 |
EndPage | 10 |
ExternalDocumentID | 9488896 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i203t-2c04749c4b2c191937730da49d8c8bd05cdd66224009697309cc335387d71f533 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:39:50 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-2c04749c4b2c191937730da49d8c8bd05cdd66224009697309cc335387d71f533 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9488896 |
PublicationCentury | 2000 |
PublicationDate | 2021-May-10 |
PublicationDateYYYYMMDD | 2021-05-10 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Annual Joint Conference of the IEEE Computer and Communications Societies |
PublicationTitleAbbrev | INFOCOM |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008726 |
Score | 2.1738868 |
Snippet | Contextual bandit learning selects actions (i.e., arms) based on context information to maximize rewards while balancing exploitation and exploration. In many... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Cloud computing Conferences Dynamic scheduling Prediction algorithms Simulation Upper bound Virtual machining |
Title | Bandit Learning with Predicted Context: Regret Analysis and Selective Context Query |
URI | https://ieeexplore.ieee.org/document/9488896 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5sexB98bKJdyL4aLq1SZvER4dDhW3qHOxtrEkqImwyWlB_vSdZNy_44Ftpc0hI0nNJzvcdgDO0ajpMQ0aFnQjKjWJUMa2pTK3Nwgx1onHY4W4vuR7y21E8qsD5CgtjrfXJZzZwj_4u38x04Y7Kmgp3m1RJFaq4zRZYrZXWlSJK1uC05NBs3vQ6_Xa_i9pWuigwCoNS-EcVFW9EOpvQXXa_yB15CYo8DfTHL2bG_45vCxpfcD1ytzJE21Cx0x3Y-MY0WIfBpYOv5KSkU30i7vwVhdw1DfqcxJNUveUX5MFiAJ6TJVcJQTEy8LVyUC0um5H7ws7fGzDsXD22r2lZT4E-Ry2W00i3uOBK8zTSGKahY4K_t5lwZaSWqWnF2pgk8VmlKlH4TWnNGGpEYUSYoV-4C7XpbGr3gIRZKpmxaOkmIY90LDMeGWYFT2KjjBD7UHfTM35dUGaMy5k5-Pv1Iay7JaKeFPUIavm8sMdo6_P0xC_yJ2gpqOQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFD5BTLy8eAHj3Zr4aIFt3dr6KJGAMlCBhDfC2s4YEzBkS9Rf7-kYeIkPvi3bTtK02_nOac_3HYALRDXlRI5HuRlzyrT0qPSUoiIyJnZi9InacofDTtAcsNuhPyzA5ZILY4zJis9MxV5mZ_l6qlK7VVaV-LUJGazAKuI-8-dsraXfFdwN1uA8V9GstjqNbr0bor8VNg90nUpu_qOPSgYjjS0IFwOYV4-8VNIkqqiPX9qM_x3hNpS_CHvkfglFO1Awk13Y_KY1WILetSWwJCQXVH0idgcWjexBDUadJJOpekuuyKPBFDwhC7USgmakl3XLQce4eI08pGb2XoZB46Zfb9K8owJ9dmteQl1VY5xJxSJXYaKGoQn-4HrMpBZKRLrmK62DIKsrlYHEZ1Ipz0OfyDV3YowM96A4mU7MPhAnjoSnDWLd2GGu8kXMXO0ZzgJfS835AZTs9Ixe56IZo3xmDv--fQbrzX7YHrVbnbsj2LDLRTOJ1GMoJrPUnCDyJ9FptuCfcZqsMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Annual+Joint+Conference+of+the+IEEE+Computer+and+Communications+Societies&rft.atitle=Bandit+Learning+with+Predicted+Context%3A+Regret+Analysis+and+Selective+Context+Query&rft.au=Yang%2C+Jianyi&rft.au=Ren%2C+Shaolei&rft.date=2021-05-10&rft.pub=IEEE&rft.eissn=2641-9874&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FINFOCOM42981.2021.9488896&rft.externalDocID=9488896 |