A Neuromorphic Processing System for Low-Power Wearable ECG Classification
This paper proposes a neuromorphic processing system and its classifier design for always-on wearable electrocardiogram (ECG) classification. The ECG signal is captured by level crossing (LC) sampling yielding single-bit temporal coding that can be natively fed into a spiking neural network (SNN) in...
Saved in:
Published in | 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS) pp. 1 - 5 |
---|---|
Main Authors | , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
07.10.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/BioCAS49922.2021.9644939 |
Cover
Abstract | This paper proposes a neuromorphic processing system and its classifier design for always-on wearable electrocardiogram (ECG) classification. The ECG signal is captured by level crossing (LC) sampling yielding single-bit temporal coding that can be natively fed into a spiking neural network (SNN) in an event-driven manner. Such an architecture simplifies the quantization of analog-to-digital converter (ADC) and bypasses the coding processing for SNN. Thus, the system power can be reduced by simplified data conversion architecture, single-bit data representation for input data reduction, and spare processing of SNN. Spatio-temporal backpropagation (STBP) training is optimized to adapt to the LC-based data representation and mitigate the firing rate, thus increase network sparsity. The system-level design of the hardware architecture consisting of an LC-ADC and an SNN processor is evaluated by Simulink-ModelSim co-simulation. Trained with the MIT-BIH database, the proposed system achieves 95.34% in classification accuracy with an average of 79 sampling points and 24.6 kFLOPs per inference, corresponding to 55.9 × and 42.4 x reduction on sampling data and FLOPs per inference respectively, compared with conventional ADC and artificial neural network (ANN) approaches. |
---|---|
AbstractList | This paper proposes a neuromorphic processing system and its classifier design for always-on wearable electrocardiogram (ECG) classification. The ECG signal is captured by level crossing (LC) sampling yielding single-bit temporal coding that can be natively fed into a spiking neural network (SNN) in an event-driven manner. Such an architecture simplifies the quantization of analog-to-digital converter (ADC) and bypasses the coding processing for SNN. Thus, the system power can be reduced by simplified data conversion architecture, single-bit data representation for input data reduction, and spare processing of SNN. Spatio-temporal backpropagation (STBP) training is optimized to adapt to the LC-based data representation and mitigate the firing rate, thus increase network sparsity. The system-level design of the hardware architecture consisting of an LC-ADC and an SNN processor is evaluated by Simulink-ModelSim co-simulation. Trained with the MIT-BIH database, the proposed system achieves 95.34% in classification accuracy with an average of 79 sampling points and 24.6 kFLOPs per inference, corresponding to 55.9 × and 42.4 x reduction on sampling data and FLOPs per inference respectively, compared with conventional ADC and artificial neural network (ANN) approaches. |
Author | Gan, Leijing Chu, Haoming Zou, Zhuo Zheng, Lirong Jia, Hao Qian, Liyu Huan, Yuxiang Yan, Yulong Jin, Yi |
Author_xml | – sequence: 1 givenname: Haoming surname: Chu fullname: Chu, Haoming email: hmchu19@fudan.edu.cn organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China – sequence: 2 givenname: Hao surname: Jia fullname: Jia, Hao organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China – sequence: 3 givenname: Yulong surname: Yan fullname: Yan, Yulong organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China – sequence: 4 givenname: Yi surname: Jin fullname: Jin, Yi organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China – sequence: 5 givenname: Liyu surname: Qian fullname: Qian, Liyu organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China – sequence: 6 givenname: Leijing surname: Gan fullname: Gan, Leijing organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China – sequence: 7 givenname: Yuxiang surname: Huan fullname: Huan, Yuxiang organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China – sequence: 8 givenname: Lirong surname: Zheng fullname: Zheng, Lirong email: lrzheng@fudan.edu.cn organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China – sequence: 9 givenname: Zhuo surname: Zou fullname: Zou, Zhuo email: zhuo@fudan.edu.cn organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China |
BookMark | eNotj81Kw0AURkfQha19AjfzAonz18nMMoZaK0ELrbgsN5M7OpBkyiRS-vYW7OLjbA4Hvhm5HeKAhFDOcs6ZfXoOsSp3ylohcsEEz61Wykp7Q2a8EOYypop78lbSd_xNsY_p-BMc3abocBzD8E1353HCnvqYaB1P2TaeMNEvhARNh3RVrWnVwUX1wcEU4vBA7jx0Iy6unJPPl9W-es3qj_WmKussCCanTBivQRqQ4JrCFoprLV3DrXdgnFWGgfPgW9EKzxVnrllKbJUBvVRg0Cs5J4__3YCIh2MKPaTz4XpP_gFYzEvH |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BioCAS49922.2021.9644939 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728172047 9781728172040 |
EndPage | 5 |
ExternalDocumentID | 9644939 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61876039,62076066,62004045 funderid: 10.13039/501100001809 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-28f6a38a3acb79741663cb19fca8c9480acfafd2d2f1410cb53ed48a654a8ef43 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:53 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-28f6a38a3acb79741663cb19fca8c9480acfafd2d2f1410cb53ed48a654a8ef43 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9644939 |
PublicationCentury | 2000 |
PublicationDate | 2021-Oct.-7 |
PublicationDateYYYYMMDD | 2021-10-07 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct.-7 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS) |
PublicationTitleAbbrev | BIOCAS |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8099341 |
Snippet | This paper proposes a neuromorphic processing system and its classifier design for always-on wearable electrocardiogram (ECG) classification. The ECG signal is... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Data acquisition ECG Electrocardiography Firing LC sampling Neuromorphic processing Neuromorphics Quantization (signal) SNN Training |
Title | A Neuromorphic Processing System for Low-Power Wearable ECG Classification |
URI | https://ieeexplore.ieee.org/document/9644939 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg0XZukbXKcY3MMJwMd7jZe8wOGuIp0CP71JmmnKB68hRJIee_B99p83_cQumJaJ5ZpILEtgHADlMgUcgKMgaaqyBPr9c6z-2yy4NNlumyh6y8tjDEmkM9M5JfhLl-Xaut_lfWlA2_JZBu1XZnVWq0dOSeW_Zt1ORw8cG-06r77aBI123_MTQmwMd5Hs92BNVvkOdpWRaQ-fnkx_veNDlDvW6CH51_Qc4haZtNF0wEOVhsvpYvdWuFGA-A24NqXHLsGFd-V72TuR6PhJ1fkXjiFR8NbHIZjetpQyFQPLcajx-GENKMSyJrGrCJU2AyYAAYuvNJ3WRlTRSKtAqEkFzEoC1ZTTa0ndqoiZUZzAVnKQRjL2RHqbMqNOUZY597jy3UuhUN-blJJrWSuS-GZYLGA-AR1fRxWr7UbxqoJwenfj8_Qns9FoL_l56hTvW3NhYPxqrgM-fsERXCfVQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zHvSksom_zcGj6dokbZPjHJtzbmPghruNND9giKtIh-Bfb5J2E8WDtxBSUr6v8L6k770PgBuiVGSIEig0mUBUC4x4LFIkCBEKyyyNjNM7j8ZJf0YH83heA7dbLYzW2pPPdOCG_l--yuXaXZW1uAVvTvgO2LW4T-NSrbWh54S8dbfMO-0n6qxW7ckPR0H1wI_OKR44egdgtNmy5Iu8BOsiC-TnLzfG_77TIWh-S_TgZAs-R6CmVw0waENvtvGa2-gtJaxUAHYBLJ3JoS1R4TD_QBPXHA0-28_cSadgt3MPfXtMRxzyuWqCWa877fRR1SwBLXFICoSZSQRhgggbYO7qrITILOJGCiY5ZaGQRhiFFTaO2imzmGhFmUhiKpg2lByD-ipf6RMAVepcvmztklnspzrm2HBi6xSaMBIyEZ6ChovD4q30w1hUITj7e_oa7PWno-Fi-DB-PAf7Li-eDJdegHrxvtaXFtSL7Mrn8gvO_6Ki |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Biomedical+Circuits+and+Systems+Conference+%28BioCAS%29&rft.atitle=A+Neuromorphic+Processing+System+for+Low-Power+Wearable+ECG+Classification&rft.au=Chu%2C+Haoming&rft.au=Jia%2C+Hao&rft.au=Yan%2C+Yulong&rft.au=Jin%2C+Yi&rft.date=2021-10-07&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBioCAS49922.2021.9644939&rft.externalDocID=9644939 |