A Neuromorphic Processing System for Low-Power Wearable ECG Classification

This paper proposes a neuromorphic processing system and its classifier design for always-on wearable electrocardiogram (ECG) classification. The ECG signal is captured by level crossing (LC) sampling yielding single-bit temporal coding that can be natively fed into a spiking neural network (SNN) in...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE Biomedical Circuits and Systems Conference (BioCAS) pp. 1 - 5
Main Authors Chu, Haoming, Jia, Hao, Yan, Yulong, Jin, Yi, Qian, Liyu, Gan, Leijing, Huan, Yuxiang, Zheng, Lirong, Zou, Zhuo
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.10.2021
Subjects
Online AccessGet full text
DOI10.1109/BioCAS49922.2021.9644939

Cover

Abstract This paper proposes a neuromorphic processing system and its classifier design for always-on wearable electrocardiogram (ECG) classification. The ECG signal is captured by level crossing (LC) sampling yielding single-bit temporal coding that can be natively fed into a spiking neural network (SNN) in an event-driven manner. Such an architecture simplifies the quantization of analog-to-digital converter (ADC) and bypasses the coding processing for SNN. Thus, the system power can be reduced by simplified data conversion architecture, single-bit data representation for input data reduction, and spare processing of SNN. Spatio-temporal backpropagation (STBP) training is optimized to adapt to the LC-based data representation and mitigate the firing rate, thus increase network sparsity. The system-level design of the hardware architecture consisting of an LC-ADC and an SNN processor is evaluated by Simulink-ModelSim co-simulation. Trained with the MIT-BIH database, the proposed system achieves 95.34% in classification accuracy with an average of 79 sampling points and 24.6 kFLOPs per inference, corresponding to 55.9 × and 42.4 x reduction on sampling data and FLOPs per inference respectively, compared with conventional ADC and artificial neural network (ANN) approaches.
AbstractList This paper proposes a neuromorphic processing system and its classifier design for always-on wearable electrocardiogram (ECG) classification. The ECG signal is captured by level crossing (LC) sampling yielding single-bit temporal coding that can be natively fed into a spiking neural network (SNN) in an event-driven manner. Such an architecture simplifies the quantization of analog-to-digital converter (ADC) and bypasses the coding processing for SNN. Thus, the system power can be reduced by simplified data conversion architecture, single-bit data representation for input data reduction, and spare processing of SNN. Spatio-temporal backpropagation (STBP) training is optimized to adapt to the LC-based data representation and mitigate the firing rate, thus increase network sparsity. The system-level design of the hardware architecture consisting of an LC-ADC and an SNN processor is evaluated by Simulink-ModelSim co-simulation. Trained with the MIT-BIH database, the proposed system achieves 95.34% in classification accuracy with an average of 79 sampling points and 24.6 kFLOPs per inference, corresponding to 55.9 × and 42.4 x reduction on sampling data and FLOPs per inference respectively, compared with conventional ADC and artificial neural network (ANN) approaches.
Author Gan, Leijing
Chu, Haoming
Zou, Zhuo
Zheng, Lirong
Jia, Hao
Qian, Liyu
Huan, Yuxiang
Yan, Yulong
Jin, Yi
Author_xml – sequence: 1
  givenname: Haoming
  surname: Chu
  fullname: Chu, Haoming
  email: hmchu19@fudan.edu.cn
  organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China
– sequence: 2
  givenname: Hao
  surname: Jia
  fullname: Jia, Hao
  organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China
– sequence: 3
  givenname: Yulong
  surname: Yan
  fullname: Yan, Yulong
  organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China
– sequence: 4
  givenname: Yi
  surname: Jin
  fullname: Jin, Yi
  organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China
– sequence: 5
  givenname: Liyu
  surname: Qian
  fullname: Qian, Liyu
  organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China
– sequence: 6
  givenname: Leijing
  surname: Gan
  fullname: Gan, Leijing
  organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China
– sequence: 7
  givenname: Yuxiang
  surname: Huan
  fullname: Huan, Yuxiang
  organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China
– sequence: 8
  givenname: Lirong
  surname: Zheng
  fullname: Zheng, Lirong
  email: lrzheng@fudan.edu.cn
  organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China
– sequence: 9
  givenname: Zhuo
  surname: Zou
  fullname: Zou, Zhuo
  email: zhuo@fudan.edu.cn
  organization: Fudan University,State Key Laboratory of ASIC and System,Shanghai,China
BookMark eNotj81Kw0AURkfQha19AjfzAonz18nMMoZaK0ELrbgsN5M7OpBkyiRS-vYW7OLjbA4Hvhm5HeKAhFDOcs6ZfXoOsSp3ylohcsEEz61Wykp7Q2a8EOYypop78lbSd_xNsY_p-BMc3abocBzD8E1353HCnvqYaB1P2TaeMNEvhARNh3RVrWnVwUX1wcEU4vBA7jx0Iy6unJPPl9W-es3qj_WmKussCCanTBivQRqQ4JrCFoprLV3DrXdgnFWGgfPgW9EKzxVnrllKbJUBvVRg0Cs5J4__3YCIh2MKPaTz4XpP_gFYzEvH
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BioCAS49922.2021.9644939
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728172047
9781728172040
EndPage 5
ExternalDocumentID 9644939
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61876039,62076066,62004045
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-28f6a38a3acb79741663cb19fca8c9480acfafd2d2f1410cb53ed48a654a8ef43
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:53 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-28f6a38a3acb79741663cb19fca8c9480acfafd2d2f1410cb53ed48a654a8ef43
PageCount 5
ParticipantIDs ieee_primary_9644939
PublicationCentury 2000
PublicationDate 2021-Oct.-7
PublicationDateYYYYMMDD 2021-10-07
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-7
  day: 07
PublicationDecade 2020
PublicationTitle 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS)
PublicationTitleAbbrev BIOCAS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8099341
Snippet This paper proposes a neuromorphic processing system and its classifier design for always-on wearable electrocardiogram (ECG) classification. The ECG signal is...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
Data acquisition
ECG
Electrocardiography
Firing
LC sampling
Neuromorphic processing
Neuromorphics
Quantization (signal)
SNN
Training
Title A Neuromorphic Processing System for Low-Power Wearable ECG Classification
URI https://ieeexplore.ieee.org/document/9644939
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg0XZukbXKcY3MMJwMd7jZe8wOGuIp0CP71JmmnKB68hRJIee_B99p83_cQumJaJ5ZpILEtgHADlMgUcgKMgaaqyBPr9c6z-2yy4NNlumyh6y8tjDEmkM9M5JfhLl-Xaut_lfWlA2_JZBu1XZnVWq0dOSeW_Zt1ORw8cG-06r77aBI123_MTQmwMd5Hs92BNVvkOdpWRaQ-fnkx_veNDlDvW6CH51_Qc4haZtNF0wEOVhsvpYvdWuFGA-A24NqXHLsGFd-V72TuR6PhJ1fkXjiFR8NbHIZjetpQyFQPLcajx-GENKMSyJrGrCJU2AyYAAYuvNJ3WRlTRSKtAqEkFzEoC1ZTTa0ndqoiZUZzAVnKQRjL2RHqbMqNOUZY597jy3UuhUN-blJJrWSuS-GZYLGA-AR1fRxWr7UbxqoJwenfj8_Qns9FoL_l56hTvW3NhYPxqrgM-fsERXCfVQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zHvSksom_zcGj6dokbZPjHJtzbmPghruNND9giKtIh-Bfb5J2E8WDtxBSUr6v8L6k770PgBuiVGSIEig0mUBUC4x4LFIkCBEKyyyNjNM7j8ZJf0YH83heA7dbLYzW2pPPdOCG_l--yuXaXZW1uAVvTvgO2LW4T-NSrbWh54S8dbfMO-0n6qxW7ckPR0H1wI_OKR44egdgtNmy5Iu8BOsiC-TnLzfG_77TIWh-S_TgZAs-R6CmVw0waENvtvGa2-gtJaxUAHYBLJ3JoS1R4TD_QBPXHA0-28_cSadgt3MPfXtMRxzyuWqCWa877fRR1SwBLXFICoSZSQRhgggbYO7qrITILOJGCiY5ZaGQRhiFFTaO2imzmGhFmUhiKpg2lByD-ipf6RMAVepcvmztklnspzrm2HBi6xSaMBIyEZ6ChovD4q30w1hUITj7e_oa7PWno-Fi-DB-PAf7Li-eDJdegHrxvtaXFtSL7Mrn8gvO_6Ki
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Biomedical+Circuits+and+Systems+Conference+%28BioCAS%29&rft.atitle=A+Neuromorphic+Processing+System+for+Low-Power+Wearable+ECG+Classification&rft.au=Chu%2C+Haoming&rft.au=Jia%2C+Hao&rft.au=Yan%2C+Yulong&rft.au=Jin%2C+Yi&rft.date=2021-10-07&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBioCAS49922.2021.9644939&rft.externalDocID=9644939