In silico Evaluation of Wearable Cardiac Defibrillator: Personalized Therapy Planning to Prevent Sudden Cardiac Death
In this paper, we propose a computational model to predict and optimize the defibrillation mechanism of Wearable Cardiac Defibrillator (WCD). The computational model is developed from high resolution torso cardiac MRI followed by biophysical simulation to assess the efficacy of defibrillation by det...
Saved in:
Published in | 2021 29th European Signal Processing Conference (EUSIPCO) pp. 1201 - 1205 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
EURASIP
23.08.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-1465 |
DOI | 10.23919/EUSIPCO54536.2021.9616251 |
Cover
Loading…
Abstract | In this paper, we propose a computational model to predict and optimize the defibrillation mechanism of Wearable Cardiac Defibrillator (WCD). The computational model is developed from high resolution torso cardiac MRI followed by biophysical simulation to assess the efficacy of defibrillation by determining defibrillation thresholds (DFT) and extent of myocardial damage. A measure for quantifying such efficacy is proposed by calculating the divergence in the distribution of myocardial potential gradient obtained in silico, with respect to an ideal probabilistic distribution, defined for defibrillator success. Variations in defibrillation efficacy is simulated for using different shocking electrode configurations to assess the best defibrillator outcome with minimal myocardial damage. The developed model can be used for designing personalized WCD vests depending on subject specific anatomy and pathology. |
---|---|
AbstractList | In this paper, we propose a computational model to predict and optimize the defibrillation mechanism of Wearable Cardiac Defibrillator (WCD). The computational model is developed from high resolution torso cardiac MRI followed by biophysical simulation to assess the efficacy of defibrillation by determining defibrillation thresholds (DFT) and extent of myocardial damage. A measure for quantifying such efficacy is proposed by calculating the divergence in the distribution of myocardial potential gradient obtained in silico, with respect to an ideal probabilistic distribution, defined for defibrillator success. Variations in defibrillation efficacy is simulated for using different shocking electrode configurations to assess the best defibrillator outcome with minimal myocardial damage. The developed model can be used for designing personalized WCD vests depending on subject specific anatomy and pathology. |
Author | Mazumder, Oishee Sinha, Aniruddha |
Author_xml | – sequence: 1 givenname: Oishee surname: Mazumder fullname: Mazumder, Oishee email: oishee.mazumder@tcs.com organization: TCS Research, Tata Consultancy Services,Kolkata,India – sequence: 2 givenname: Aniruddha surname: Sinha fullname: Sinha, Aniruddha email: aniruddha.s@tcs.com organization: TCS Research, Tata Consultancy Services,Kolkata,India |
BookMark | eNpN0E9PwjAYgPFqNBGRT-Cl8T7sn61dvZmJSkLCEiAeydvtrTSpHekGCXx6D3Lw9Nx-h-ee3MQuIiFPnE2FNNw8zzareV0ti7yQaiqY4FOjuBIFvyITo0vDSqGNZopdk5FgWmU8V8UdmfS9t0yUrNScqRE5zCPtffBNR2dHCAcYfBdp5-gXQgIbkFaQWg8NfUPnbfIhwNClF1pj6rsIwZ-xpesdJtifaB0gRh-_6dDROuER40BXh7bF-I-BYfdAbh2EHieXjsnmfbauPrPF8mNevS4yL5gcMiEtZ-hUI2SjrGm0sZoX0jUSlXXM6taVxjFwppDQOm4Zyy1YZ3SOLkcrx-Txz_WIuN0n_wPptL2Mkr_lk2Kj |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/EUSIPCO54536.2021.9616251 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9789082797060 9082797062 |
EISSN | 2076-1465 |
EndPage | 1205 |
ExternalDocumentID | 9616251 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-23b10ef6c23c6b9c79b7153fc3e6bf0b7df89f0af953adf1b004babf974ef4eb3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:25:12 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-23b10ef6c23c6b9c79b7153fc3e6bf0b7df89f0af953adf1b004babf974ef4eb3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9616251 |
PublicationCentury | 2000 |
PublicationDate | 2021-Aug.-23 |
PublicationDateYYYYMMDD | 2021-08-23 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-Aug.-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | 2021 29th European Signal Processing Conference (EUSIPCO) |
PublicationTitleAbbrev | EUSIPCO |
PublicationYear | 2021 |
Publisher | EURASIP |
Publisher_xml | – name: EURASIP |
SSID | ssib028087106 ssib025355106 |
Score | 1.7774067 |
Snippet | In this paper, we propose a computational model to predict and optimize the defibrillation mechanism of Wearable Cardiac Defibrillator (WCD). The computational... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1201 |
SubjectTerms | Biological system modeling Computational modeling Defibrillator Discrete Fourier transforms Electrodes Finite Element model MRI Myocardial damage Myocardium Torso Wearable computers Weighted Kullback Leibler divergence |
Title | In silico Evaluation of Wearable Cardiac Defibrillator: Personalized Therapy Planning to Prevent Sudden Cardiac Death |
URI | https://ieeexplore.ieee.org/document/9616251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhJ6jiJE7OWohYJqNRWdKti-06qQC2CZOmvx85HKYiBLcpgWb6z75597x0h1zyBBFyVuMqCyIviVHsKQHoGozhATJIYSrXPJzGcRQ_zeN4iN1suDACUxWfgu8_yLd-sdeGuynpSBDZdt1hnzwK3iqvV-A6PbeDceTHkKbNQgIlKZ5SHMpC9wWwyGvefbc4QuuIEHvj1gD86q5SB5f6APDZTqupJXv0iV77e_FJr_O-cD0n3m8JHx9vgdERasOqQYrSin8s3a3w62Kp80zXSF-vvjkNF-6XDaHoH6LgA1kcsJr-l4yZl34Ch00qIgDb9jmi-prUSFJ0U7iDbGcYmmF0yux9M-0Ov7rvgLTkLc4-HKmCAQvNQCyV1IlViD0bUIQiFTCUGU4ksQxmHmcHA7XyVKbTQBDCy6PyYtFfrFZwQGghjTaWM5KmKODMSJYDSDJkwKJk4JR23ZIv3SlpjUa_W2d-_z8m-M5u70uXhBWnnHwVc2pwgV1elM3wB4qa3xA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4MHvSkBoxve_DoQtvd7VKvCAEfSAJEboS2MwnRsEZ3L_x6213ARzx4azZp07TfduZrZ74h5EokkICPEtczHgVR3DSBBlCBxSjmiEkSQ6H22ZfdcXQ3iSdb5HqTCwMARfAZ1H2zeMu3qcn9VVlDSe7cdcd1tp3dj3mZrbVGj4id6fz2ZiiazJEBJkulUREqrhrt8bA3aD253qEPTxC8vhryR22VwrR09sjjelJlRMlLPc903Sx_6TX-d9b7pPaVxEcHG_N0QLZgUSV5b0E_5q9u-2l7o_NNU6TPDvE-i4q2CsgYegvoswEcShwrv6GDtdO-BEtHpRQBXVc8ollKV1pQdJj7o-zbMM7FrJFxpz1qdYNV5YVgLliYBSLUnAFKI0IjtTKJ0ok7GtGEIDUynVhsKmQzVHE4s8j9v69nGh05AYwcPz8klUW6gCNCubSOZWurRFNHglmFCkAbhkxaVEwek6pfsulbKa4xXa3Wyd-fL8lOd_T4MH3o9e9Pya7fQn_BK8IzUsneczh3HkKmLwpgfAKk3bsN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+29th+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=In+silico+Evaluation+of+Wearable+Cardiac+Defibrillator%3A+Personalized+Therapy+Planning+to+Prevent+Sudden+Cardiac+Death&rft.au=Mazumder%2C+Oishee&rft.au=Sinha%2C+Aniruddha&rft.date=2021-08-23&rft.pub=EURASIP&rft.eissn=2076-1465&rft.spage=1201&rft.epage=1205&rft_id=info:doi/10.23919%2FEUSIPCO54536.2021.9616251&rft.externalDocID=9616251 |