Non-intrusive Load Identification Method Based on Integrated Intelligence Strategy

Existing non-intrusive load identification methods are mostly single recognition models that based on a certain feature space. It is difficult to guarantee the global generalization performance of the model in the complex feature space. In this paper, the distribution of features of common household...

Full description

Saved in:
Bibliographic Details
Published in2019 25th International Conference on Automation and Computing (ICAC) pp. 1 - 6
Main Authors Zhiren, Ren, Bo, Tang, Longfeng, Wang, Hui, Liu, Yanfei, Li, Haiping, Wu
Format Conference Proceeding
LanguageEnglish
Published Chinese Automation and Computing Society in the UK - CACSUK 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing non-intrusive load identification methods are mostly single recognition models that based on a certain feature space. It is difficult to guarantee the global generalization performance of the model in the complex feature space. In this paper, the distribution of features of common household appliances in different feature space is analyzed and a variety of feature spaces are constructed. The Extreme Learning Machine model is selected as the base learner to train the optimal Extreme Learning Machine recognition model in the corresponding feature space. The AdaBoost algorithm is used to combine the base learner and build the ensemble extreme learning machine load recognition model. The experimental results based on the measured data showed that the accuracy of the proposed non-intrusive load identification method is obviously superior to the classical Extreme Learning Machine model and the Support Vector Machine model.
AbstractList Existing non-intrusive load identification methods are mostly single recognition models that based on a certain feature space. It is difficult to guarantee the global generalization performance of the model in the complex feature space. In this paper, the distribution of features of common household appliances in different feature space is analyzed and a variety of feature spaces are constructed. The Extreme Learning Machine model is selected as the base learner to train the optimal Extreme Learning Machine recognition model in the corresponding feature space. The AdaBoost algorithm is used to combine the base learner and build the ensemble extreme learning machine load recognition model. The experimental results based on the measured data showed that the accuracy of the proposed non-intrusive load identification method is obviously superior to the classical Extreme Learning Machine model and the Support Vector Machine model.
Author Haiping, Wu
Longfeng, Wang
Zhiren, Ren
Yanfei, Li
Bo, Tang
Hui, Liu
Author_xml – sequence: 1
  givenname: Ren
  surname: Zhiren
  fullname: Zhiren, Ren
  organization: Wasion Group Co., Ltd,Changsha,China,410000
– sequence: 2
  givenname: Tang
  surname: Bo
  fullname: Bo, Tang
  organization: Wasion Group Co., Ltd,Changsha,China,410000
– sequence: 3
  givenname: Wang
  surname: Longfeng
  fullname: Longfeng, Wang
  organization: Wasion Group Co., Ltd,Changsha,China,410000
– sequence: 4
  givenname: Liu
  surname: Hui
  fullname: Hui, Liu
  organization: Central South University,School of Traffic & Transportation Engineering,Changsha,China,410075
– sequence: 5
  givenname: Li
  surname: Yanfei
  fullname: Yanfei, Li
  organization: Central South University,School of Traffic & Transportation Engineering,Changsha,China,410075
– sequence: 6
  givenname: Wu
  surname: Haiping
  fullname: Haiping, Wu
  organization: Central South University,School of Traffic & Transportation Engineering,Changsha,China,410075
BookMark eNotj8tKxDAYhSPowhl9Al3kBVpzb7Ici5dCnQEv6yEkf2qgJtJGYd7eDs7qnO8sDnwrdJ5yAoRuKakZN9TcdW1Om7ZmhJpaayOpEWdoRbWivFFKkkv0us2piqlMP3P8Bdxn63HnIZUYorMl5oRfoHxmj-_tDB4v3KUCw2TLQsc6jnGA5AC_leM4HK7QRbDjDNenXKOPx4f39rnqd09du-mryAgvFQ0icOU9c9QY0EQxJ6mgVElrBPPcS-U1s66RrgnSB9YYqaVYFEijjQC-Rjf_vxEA9t9T_LLTYX_S5H9QOkzL
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/IConAC.2019.8895194
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1861376650
9781861376657
EndPage 6
ExternalDocumentID 8895194
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-1f4f36dd2c199e8062c5141165a942d3d56d82ac75c7f5df279585419407894e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:36 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-1f4f36dd2c199e8062c5141165a942d3d56d82ac75c7f5df279585419407894e3
PageCount 6
ParticipantIDs ieee_primary_8895194
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle 2019 25th International Conference on Automation and Computing (ICAC)
PublicationTitleAbbrev IConAC
PublicationYear 2019
Publisher Chinese Automation and Computing Society in the UK - CACSUK
Publisher_xml – name: Chinese Automation and Computing Society in the UK - CACSUK
Score 1.7625034
Snippet Existing non-intrusive load identification methods are mostly single recognition models that based on a certain feature space. It is difficult to guarantee the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms AdaBoost
ensemble model
extreme learning machine
non-intrusive load identification
Title Non-intrusive Load Identification Method Based on Integrated Intelligence Strategy
URI https://ieeexplore.ieee.org/document/8895194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwED6STJ3akpS-0dCxSmxZsqyxDQ1JaUIpDWQLekIo2B2SIf31lWQnfdChmyyELd2BP0l333cAN0ET3FHKcSq1wtTxBKtEGawoSTPrMULGiO50lo_n9HHBFi243XNhrLUx-cz2QzPG8k2lN-GqbFAUfj8gaBvaXIiaq1Wz4UgmUjGYDKvybhjStYL_49AfNVMiZIwOYbr7WJ0p8tbfrFVff_zSYfzvbI6g90XOQ8972DmGli278DKrSrwqA4PC_77QUyUNqjm4rrmUQ9NYKxrde9gyyD9PdkIRBk2-6XKiRq9224P56OF1OMZNuQS8Ikm2xqmjLsuNIToVwhZJTrTfDQV5HSkoMZlhuSmI1Jxp7phxhAt_VqB-CUFyntrsBDplVdpTQIlMeSKts0oLyp1U3BDDFJMsy7V_8xl0gz2W77UixrIxxfnf3RdwEHxSZ2ZdQsfbwl55KF-r6-jDT49loNg
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MgGCZzHvSkZjN-y8GjbC2FUo66uKy6LsZsyW4Ln8li0nrYDvrrBdrNj3jwVhoC5YXwvIX3eV4AbrwmuCWEoVgoiYhlEZKR1EgSHCfGYYQIN7rFJB3NyOOczlvgdsuFMcaE4DPT84_hLl9Xau2PyvpZ5vwBTnbALvV-Rc3WqvlwOOEx7-eDqrwb-IAtvwJC5R9ZUwJoDA9AsemujhV57a1Xsqc-fikx_vd7DkH3i54Hn7fAcwRapuyAl0lVomXpORRuA4PjSmhYs3BtcywHi5AtGt474NLQlfONVISG-TdlTtgo1r53wWz4MB2MUJMwAS1xlKxQbIlNUq2xijk3WZRi5fwhL7AjOME60TTVGRaKUcUs1RYz7v4WiBuCF50nJjkG7bIqzQmAkYhZJIw1UnHCrJBMY00lFTRJlWv5FHS8PRZvtSbGojHF2d-vr8HeaFqMF-N88nQO9v381HFaF6Dt7GIuHbCv5FWYz08pnaQl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+25th+International+Conference+on+Automation+and+Computing+%28ICAC%29&rft.atitle=Non-intrusive+Load+Identification+Method+Based+on+Integrated+Intelligence+Strategy&rft.au=Zhiren%2C+Ren&rft.au=Bo%2C+Tang&rft.au=Longfeng%2C+Wang&rft.au=Hui%2C+Liu&rft.date=2019-09-01&rft.pub=Chinese+Automation+and+Computing+Society+in+the+UK+-+CACSUK&rft.spage=1&rft.epage=6&rft_id=info:doi/10.23919%2FIConAC.2019.8895194&rft.externalDocID=8895194