Tiny Object Detection in Aerial Images

Object detection in Earth Vision has achieved great progress in recent years. However, tiny object detection in aerial images remains a very challenging problem since the tiny objects contain a small number of pixels and are easily confused with the background. To advance tiny object detection resea...

Full description

Saved in:
Bibliographic Details
Published in2020 25th International Conference on Pattern Recognition (ICPR) pp. 3791 - 3798
Main Authors Wang, Jinwang, Yang, Wen, Guo, Haowen, Zhang, Ruixiang, Xia, Gui-Song
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Object detection in Earth Vision has achieved great progress in recent years. However, tiny object detection in aerial images remains a very challenging problem since the tiny objects contain a small number of pixels and are easily confused with the background. To advance tiny object detection research in aerial images, we present a new dataset for Tiny Object Detection in Aerial Images (AI-TOD). Specifically, AI-TOD comes with 700,621 object instances for eight categories across 28,036 aerial images. Compared to existing object detection datasets in aerial images, the mean size of objects in AI-TOD is about 12.8 pixels, which is much smaller than others. To build a benchmark for tiny object detection in aerial images, we evaluate the state-of-the-art object detectors on our AI-TOD dataset. Experimental results show that direct application of these approaches on AI-TOD produces suboptimal object detection results, thus new specialized detectors for tiny object detection need to be designed. Therefore, we propose a multiple center points based learning network (M-CenterNet) to improve the localization performance of tiny object detection, and experimental results show the significant performance gain over the competitors.
AbstractList Object detection in Earth Vision has achieved great progress in recent years. However, tiny object detection in aerial images remains a very challenging problem since the tiny objects contain a small number of pixels and are easily confused with the background. To advance tiny object detection research in aerial images, we present a new dataset for Tiny Object Detection in Aerial Images (AI-TOD). Specifically, AI-TOD comes with 700,621 object instances for eight categories across 28,036 aerial images. Compared to existing object detection datasets in aerial images, the mean size of objects in AI-TOD is about 12.8 pixels, which is much smaller than others. To build a benchmark for tiny object detection in aerial images, we evaluate the state-of-the-art object detectors on our AI-TOD dataset. Experimental results show that direct application of these approaches on AI-TOD produces suboptimal object detection results, thus new specialized detectors for tiny object detection need to be designed. Therefore, we propose a multiple center points based learning network (M-CenterNet) to improve the localization performance of tiny object detection, and experimental results show the significant performance gain over the competitors.
Author Zhang, Ruixiang
Yang, Wen
Guo, Haowen
Wang, Jinwang
Xia, Gui-Song
Author_xml – sequence: 1
  givenname: Jinwang
  surname: Wang
  fullname: Wang, Jinwang
  email: jwwangchn@whu.edu.cn
  organization: School of Electronic Information, Wuhan University,Wuhan,Hubei,China
– sequence: 2
  givenname: Wen
  surname: Yang
  fullname: Yang, Wen
  email: yangwen@whu.edu.cn
  organization: School of Electronic Information, Wuhan University,Wuhan,Hubei,China
– sequence: 3
  givenname: Haowen
  surname: Guo
  fullname: Guo, Haowen
  email: ghw@whu.edu.cn
  organization: School of Electronic Information, Wuhan University,Wuhan,Hubei,China
– sequence: 4
  givenname: Ruixiang
  surname: Zhang
  fullname: Zhang, Ruixiang
  email: zhangruixiang@whu.edu.cn
  organization: School of Electronic Information, Wuhan University,Wuhan,Hubei,China
– sequence: 5
  givenname: Gui-Song
  surname: Xia
  fullname: Xia, Gui-Song
  email: guisong.xia@whu.edu.cn
  organization: School of Computer Science, Wuhan University,Wuhan,Hubei,China
BookMark eNotjstqAjEUQCO0C7X9goJk1d1Mc3PjJFnK2MeAYCl2LXncSERjGWfj3yvU1VkcOJwJeyinQozNQNQAwr517fePMkY0tRQSaqsAUYkRm4CWBm7C4Ji9bnK58LXfUxj4koYb8qnwXPiC-uwOvDu6HZ2f2GNyhzM93zllvx_vm_arWq0_u3axqrIUOFRAgVSMQQcZaR4d6QRgfBSp0Ur45EE2NmE0yhtNHhME1LZRFkElrwNO2ct_NxPR9q_PR9dftvd1vAIgBz1_
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR48806.2021.9413340
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728188083
9781728188089
EndPage 3798
ExternalDocumentID 9413340
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61771351
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2018CFA006
  funderid: 10.13039/501100003819
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-1ece4ddc7c2de5dae7f118bd0f6740bfb1269f3d84b87eb3f1c379649314fb7c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:29:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-1ece4ddc7c2de5dae7f118bd0f6740bfb1269f3d84b87eb3f1c379649314fb7c3
PageCount 8
ParticipantIDs ieee_primary_9413340
PublicationCentury 2000
PublicationDate 2021-Jan.-10
PublicationDateYYYYMMDD 2021-01-10
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2020 25th International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.5628362
Snippet Object detection in Earth Vision has achieved great progress in recent years. However, tiny object detection in aerial images remains a very challenging...
SourceID ieee
SourceType Publisher
StartPage 3791
SubjectTerms aerial image
benchmark
Benchmark testing
convolutional neural network
Detectors
Earth
Location awareness
Neural networks
Object detection
Performance gain
tiny object detection
Title Tiny Object Detection in Aerial Images
URI https://ieeexplore.ieee.org/document/9413340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB_HkbpNNNtk9SrW0QrVIC72VPCZQxG3R7UF_vcnuWlE8eAshkEwymVfmmyB0SZijVEIohmdkxLVwkU6UjYRTCeQiUzwNaOTxgxjO-P08nbfQ9RYLAwBV8hnEoVm95duV2YRQWS_3Epdx76DveMetxmo1oF9K8t6oP3kK7BgSDxIaN4N__JpSKY3BHhp_TVfnijzHm1LH5uNXJcb_rmcfdb_heXiyVTwHqAVFB11Nl8U7ftQhroJvoaxSrAq8LPBNxWR49OJFx1sXzQZ30_4waj5BiJYJYWVEwQC31kiTWEitAuk3N9OWOCE50U7TROSO2YzrTHrP2FHDArw0Z5Q7LQ07RO1iVcARwi4UYvFX2CrjjSBQ3rhmWqVGU5NyJcgx6gQaF-u6zsWiIe_k7-5TtBv2OYQjKDlD7fJ1A-deQZf6ojqZT2YBkRc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvSkBoxvezCe3GW77ba7R4MSUEBiIOFG-pgmhLgYXQ76622XFaPx4K1pmrSdTmem0_lmELqMqCVEgE-Gp0XAFLeBiqUJuJUxZDyVLPFo5MGQdyfsfppMa-h6g4UBgDL4DELfLP_yzVKvvKuslTmJS5l7oG85vZ-QNVqrgv2SKGv12qMnz5A-9CAmYTX8R92UUm10dtHga8J1tMgiXBUq1B-_cjH-d0V7qPkN0MOjjerZRzXIG-hqPM_f8aPynhV8C0UZZJXjeY5vSjbDvWcnPN6aaNK5G7e7QVUGIZjHES0CAhqYMVro2EBiJAhH3lSZyHLBImUViXlmqUmZSoV7G1uiqQeYZpQwq4SmB6ieL3M4RNj6VCzuEhupnRkE0pnXVMlEK6ITJnl0hBp-j7OXdaaLWbW947-7L9B2dzzoz_q94cMJ2vE0984JEp2ievG6gjOnrgt1Xp7SJy2hlGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+25th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Tiny+Object+Detection+in+Aerial+Images&rft.au=Wang%2C+Jinwang&rft.au=Yang%2C+Wen&rft.au=Guo%2C+Haowen&rft.au=Zhang%2C+Ruixiang&rft.date=2021-01-10&rft.pub=IEEE&rft.spage=3791&rft.epage=3798&rft_id=info:doi/10.1109%2FICPR48806.2021.9413340&rft.externalDocID=9413340