Semi-supervised methodologies to tackle the annotated data scarcity problem in the field of HAR
In the field of Human Activity Recognition (HAR) the majority of approaches exploit fully supervised methodologies to process inertial sensor data collected from the users' wearable devices. Unfortunately, those solutions require users to collect a large number of annotated examples to train th...
Saved in:
Published in | Proceedings / IEEE International Conference on Mobile Data Management pp. 269 - 271 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-0324 |
DOI | 10.1109/MDM52706.2021.00056 |
Cover
Abstract | In the field of Human Activity Recognition (HAR) the majority of approaches exploit fully supervised methodologies to process inertial sensor data collected from the users' wearable devices. Unfortunately, those solutions require users to collect a large number of annotated examples to train the recognition model, which is costly, unpractical, and time-consuming. In this paper, we propose diverse semi-supervised methodologies to tackle the data scarcity issue in the field of HAR. In particular, in Caviar and ProCaviar we introduce novel knowledge-based reasoning engines that exploiting the context data (e.g. semantic location, weather condition) allows a statistical classifier trained with a limited number of example to recognise a wide set of activities. Then, we propose FedHAR an hybrid semi-supervised and Federated-learning based system that enables distributing the training of an activity recognition model among a large number of subject, reducing the effort required from users to collect annotated data while preserving their privacy. |
---|---|
AbstractList | In the field of Human Activity Recognition (HAR) the majority of approaches exploit fully supervised methodologies to process inertial sensor data collected from the users' wearable devices. Unfortunately, those solutions require users to collect a large number of annotated examples to train the recognition model, which is costly, unpractical, and time-consuming. In this paper, we propose diverse semi-supervised methodologies to tackle the data scarcity issue in the field of HAR. In particular, in Caviar and ProCaviar we introduce novel knowledge-based reasoning engines that exploiting the context data (e.g. semantic location, weather condition) allows a statistical classifier trained with a limited number of example to recognise a wide set of activities. Then, we propose FedHAR an hybrid semi-supervised and Federated-learning based system that enables distributing the training of an activity recognition model among a large number of subject, reducing the effort required from users to collect annotated data while preserving their privacy. |
Author | Presotto, Riccardo |
Author_xml | – sequence: 1 givenname: Riccardo surname: Presotto fullname: Presotto, Riccardo email: riccardo.presotto@unimi.it organization: Universitá degli Studi di Milano,EveryWare Lab,Dept. of Computer Science |
BookMark | eNotzMtOAjEUgOFqNBGQJ2DTFxg8vbdLggomEBMva1LaM1KdmZKZasLba9TVv_nyj8lFlzskZMZgzhi4m-3tVnEDes6BszkAKH1Gps5YprWS3EolzsmIC6MqEFxekfEwvAMIbcGMyO4Z21QNn0fsv9KAkbZYDjnmJr8lHGjJtPjw0SAtB6S-63Lx5UdFXzwdgu9DKid67PO-wZam7pfVCZtIc03Xi6drcln7ZsDpfyfk9f7uZbmuNo-rh-ViUyUOolQMeW1lbSxaa73TkQMEiQaYUo7tA9PW1U4bpRkz3ITIleKBC8aklDEIMSGzv29CxN2xT63vTzsnjbRWiW83nVVU |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/MDM52706.2021.00056 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) - NZ IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781665428453 1665428457 |
EISSN | 2375-0324 |
EndPage | 271 |
ExternalDocumentID | 9474885 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS APO BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i203t-1e2f84f78e888a96d200c4e7015591bc1689f9675611727cd2552c2311444dc33 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:26:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-1e2f84f78e888a96d200c4e7015591bc1689f9675611727cd2552c2311444dc33 |
PageCount | 3 |
ParticipantIDs | ieee_primary_9474885 |
PublicationCentury | 2000 |
PublicationDate | 2021-June |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-June |
PublicationDecade | 2020 |
PublicationTitle | Proceedings / IEEE International Conference on Mobile Data Management |
PublicationTitleAbbrev | MDM |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0036807 |
Score | 2.1752846 |
Snippet | In the field of Human Activity Recognition (HAR) the majority of approaches exploit fully supervised methodologies to process inertial sensor data collected... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 269 |
SubjectTerms | Activity recognition Data privacy Federated Learning Knowledge based systems Machine Learning Privacy Semantics Training Uncertainty Wearable computers |
Title | Semi-supervised methodologies to tackle the annotated data scarcity problem in the field of HAR |
URI | https://ieeexplore.ieee.org/document/9474885 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp6mbuI3OXg0W9OmaXMUPxhCRdTBbqNNXmCI7bDtQf9689puinjwUAilpCUf7_1e83vvR8hFbMGmmR8wiI1kIvBTpqSQDCQ3WAVHSoUJzsmDnM3F_SJc9MjlNhcGABryGUyw2Zzlm0LX-KtsqkTk1lvYJ323zNpcrY3VDWTsRV1VIe6paXKThH7kIQnB51ikEBWqf-inNO7jbkiSzYtb1sjrpK6yif78VZPxv1-2S8bfiXr0ceuC9kgP8n0y3Cg10G7jjsjyGd5WrKzXaBlKMLQVjm4MH5S0KmiV4hkvdXCQpnleIAQ1FOmjtNQoN1R90E57hq7y5rGG-0YLS2dXT2Myv7t9uZ6xTlqBrXwvqBgH38bCRjG4CDhV0rjNogVEiKAUzzSXsbLKBROSI8LRxkUevnZY0MVfwuggOCCDvMjhkNAw9jLjutJaBSKTmUolt5HJhHVXBOqIjHC8luu2esayG6rjv2-fkB2csZaMdUoG1XsNZ87tV9l5M99fkzKt0A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mPOhp6mb8bQ8eZVIohR6NuqCOxeiW7EagfU0WIywCB_3rbYFNYzx4IGkIKaSl732v_d77ELoIFKgkdVwLAsks6jqJxRllFjAiTRUcxrhJcI4mLJzRh7k376DLdS4MANTkMxiaZn2WL3NRma2yK059_b95G2hT-33qNdlaK7vrssD227pCxOZX0W3kOb5taAgOMWUKjUb1DwWV2oGMeihavbrhjbwOqzIdis9fVRn_-207aPCdqoef1k5oF3Ug20O9lVYDbpduH8Uv8LawimppbEMBEjfS0bXpgwKXOS4Tc8qLNSDESZblBoRKbAikuBBGcKj8wK36DF5k9WM1-w3nCofXzwM0G91Nb0KrFVewFo7tlhYBRwVU-QHoGDjhTOrlIij4BkNxkgrCAq64DicYMRhHSB17OEKjQR2BUSlcdx91szyDA4S9wE6l7koI7tKUpTxhRPkypUpfPvBD1DfjFS-b-hlxO1RHf98-R1vhNBrH4_vJ4zHaNrPXULNOULd8r-BUg4AyPavn_gvbuLEd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Mobile+Data+Management&rft.atitle=Semi-supervised+methodologies+to+tackle+the+annotated+data+scarcity+problem+in+the+field+of+HAR&rft.au=Presotto%2C+Riccardo&rft.date=2021-06-01&rft.pub=IEEE&rft.eissn=2375-0324&rft.spage=269&rft.epage=271&rft_id=info:doi/10.1109%2FMDM52706.2021.00056&rft.externalDocID=9474885 |