Semi-supervised methodologies to tackle the annotated data scarcity problem in the field of HAR

In the field of Human Activity Recognition (HAR) the majority of approaches exploit fully supervised methodologies to process inertial sensor data collected from the users' wearable devices. Unfortunately, those solutions require users to collect a large number of annotated examples to train th...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Mobile Data Management pp. 269 - 271
Main Author Presotto, Riccardo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2021
Subjects
Online AccessGet full text
ISSN2375-0324
DOI10.1109/MDM52706.2021.00056

Cover

Abstract In the field of Human Activity Recognition (HAR) the majority of approaches exploit fully supervised methodologies to process inertial sensor data collected from the users' wearable devices. Unfortunately, those solutions require users to collect a large number of annotated examples to train the recognition model, which is costly, unpractical, and time-consuming. In this paper, we propose diverse semi-supervised methodologies to tackle the data scarcity issue in the field of HAR. In particular, in Caviar and ProCaviar we introduce novel knowledge-based reasoning engines that exploiting the context data (e.g. semantic location, weather condition) allows a statistical classifier trained with a limited number of example to recognise a wide set of activities. Then, we propose FedHAR an hybrid semi-supervised and Federated-learning based system that enables distributing the training of an activity recognition model among a large number of subject, reducing the effort required from users to collect annotated data while preserving their privacy.
AbstractList In the field of Human Activity Recognition (HAR) the majority of approaches exploit fully supervised methodologies to process inertial sensor data collected from the users' wearable devices. Unfortunately, those solutions require users to collect a large number of annotated examples to train the recognition model, which is costly, unpractical, and time-consuming. In this paper, we propose diverse semi-supervised methodologies to tackle the data scarcity issue in the field of HAR. In particular, in Caviar and ProCaviar we introduce novel knowledge-based reasoning engines that exploiting the context data (e.g. semantic location, weather condition) allows a statistical classifier trained with a limited number of example to recognise a wide set of activities. Then, we propose FedHAR an hybrid semi-supervised and Federated-learning based system that enables distributing the training of an activity recognition model among a large number of subject, reducing the effort required from users to collect annotated data while preserving their privacy.
Author Presotto, Riccardo
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Presotto
  fullname: Presotto, Riccardo
  email: riccardo.presotto@unimi.it
  organization: Universitá degli Studi di Milano,EveryWare Lab,Dept. of Computer Science
BookMark eNotzMtOAjEUgOFqNBGQJ2DTFxg8vbdLggomEBMva1LaM1KdmZKZasLba9TVv_nyj8lFlzskZMZgzhi4m-3tVnEDes6BszkAKH1Gps5YprWS3EolzsmIC6MqEFxekfEwvAMIbcGMyO4Z21QNn0fsv9KAkbZYDjnmJr8lHGjJtPjw0SAtB6S-63Lx5UdFXzwdgu9DKid67PO-wZam7pfVCZtIc03Xi6drcln7ZsDpfyfk9f7uZbmuNo-rh-ViUyUOolQMeW1lbSxaa73TkQMEiQaYUo7tA9PW1U4bpRkz3ITIleKBC8aklDEIMSGzv29CxN2xT63vTzsnjbRWiW83nVVU
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MDM52706.2021.00056
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665428453
1665428457
EISSN 2375-0324
EndPage 271
ExternalDocumentID 9474885
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-1e2f84f78e888a96d200c4e7015591bc1689f9675611727cd2552c2311444dc33
IEDL.DBID RIE
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-1e2f84f78e888a96d200c4e7015591bc1689f9675611727cd2552c2311444dc33
PageCount 3
ParticipantIDs ieee_primary_9474885
PublicationCentury 2000
PublicationDate 2021-June
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Conference on Mobile Data Management
PublicationTitleAbbrev MDM
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0036807
Score 2.1752846
Snippet In the field of Human Activity Recognition (HAR) the majority of approaches exploit fully supervised methodologies to process inertial sensor data collected...
SourceID ieee
SourceType Publisher
StartPage 269
SubjectTerms Activity recognition
Data privacy
Federated Learning
Knowledge based systems
Machine Learning
Privacy
Semantics
Training
Uncertainty
Wearable computers
Title Semi-supervised methodologies to tackle the annotated data scarcity problem in the field of HAR
URI https://ieeexplore.ieee.org/document/9474885
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp6mbuI3OXg0W9OmaXMUPxhCRdTBbqNNXmCI7bDtQf9689puinjwUAilpCUf7_1e83vvR8hFbMGmmR8wiI1kIvBTpqSQDCQ3WAVHSoUJzsmDnM3F_SJc9MjlNhcGABryGUyw2Zzlm0LX-KtsqkTk1lvYJ323zNpcrY3VDWTsRV1VIe6paXKThH7kIQnB51ikEBWqf-inNO7jbkiSzYtb1sjrpK6yif78VZPxv1-2S8bfiXr0ceuC9kgP8n0y3Cg10G7jjsjyGd5WrKzXaBlKMLQVjm4MH5S0KmiV4hkvdXCQpnleIAQ1FOmjtNQoN1R90E57hq7y5rGG-0YLS2dXT2Myv7t9uZ6xTlqBrXwvqBgH38bCRjG4CDhV0rjNogVEiKAUzzSXsbLKBROSI8LRxkUevnZY0MVfwuggOCCDvMjhkNAw9jLjutJaBSKTmUolt5HJhHVXBOqIjHC8luu2esayG6rjv2-fkB2csZaMdUoG1XsNZ87tV9l5M99fkzKt0A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mPOhp6mb8bQ8eZVIohR6NuqCOxeiW7EagfU0WIywCB_3rbYFNYzx4IGkIKaSl732v_d77ELoIFKgkdVwLAsks6jqJxRllFjAiTRUcxrhJcI4mLJzRh7k376DLdS4MANTkMxiaZn2WL3NRma2yK059_b95G2hT-33qNdlaK7vrssD227pCxOZX0W3kOb5taAgOMWUKjUb1DwWV2oGMeihavbrhjbwOqzIdis9fVRn_-207aPCdqoef1k5oF3Ug20O9lVYDbpduH8Uv8LawimppbEMBEjfS0bXpgwKXOS4Tc8qLNSDESZblBoRKbAikuBBGcKj8wK36DF5k9WM1-w3nCofXzwM0G91Nb0KrFVewFo7tlhYBRwVU-QHoGDjhTOrlIij4BkNxkgrCAq64DicYMRhHSB17OEKjQR2BUSlcdx91szyDA4S9wE6l7koI7tKUpTxhRPkypUpfPvBD1DfjFS-b-hlxO1RHf98-R1vhNBrH4_vJ4zHaNrPXULNOULd8r-BUg4AyPavn_gvbuLEd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Mobile+Data+Management&rft.atitle=Semi-supervised+methodologies+to+tackle+the+annotated+data+scarcity+problem+in+the+field+of+HAR&rft.au=Presotto%2C+Riccardo&rft.date=2021-06-01&rft.pub=IEEE&rft.eissn=2375-0324&rft.spage=269&rft.epage=271&rft_id=info:doi/10.1109%2FMDM52706.2021.00056&rft.externalDocID=9474885