Deep Reinforcement Learning for Robust Beamforming in IRS-assisted Wireless Communications

Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver. In this paper, we minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's pas...

Full description

Saved in:
Bibliographic Details
Published inIEEE Global Communications Conference (Online) pp. 1 - 6
Main Authors Lin, Jiaye, Zout, Yuze, Dong, Xiaoru, Gong, Shimin, Hoang, Dinh Thai, Niyato, Dusit
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2020
Subjects
Online AccessGet full text
ISSN2576-6813
DOI10.1109/GLOBECOM42002.2020.9322372

Cover

Loading…
Abstract Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver. In this paper, we minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming. Due to uncertain channel conditions, we formulate a robust power minimization problem subject to the receiver's signal-to-noise ratio (SNR) requirement and the IRS's power budget constraint. We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences. To improve the learning performance, we derive a convex approximation as a lower bound on the robust problem, which is integrated with the DRL framework and thus promoting a novel optimization-driven deep deterministic policy gradient (DDPG) approach. In particular, when the DDPG algorithm generates a part of the action (e.g., passive beamforming), we can use the model-based convex approximation to optimize the other part of the action (e.g., active beamforming) efficiently. Our simulation results demonstrate that the optimization-driven DDPG algorithm can improve both the learning rate and reward significantly compared to the conventional DDPG algorithm.
AbstractList Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver. In this paper, we minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming. Due to uncertain channel conditions, we formulate a robust power minimization problem subject to the receiver's signal-to-noise ratio (SNR) requirement and the IRS's power budget constraint. We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences. To improve the learning performance, we derive a convex approximation as a lower bound on the robust problem, which is integrated with the DRL framework and thus promoting a novel optimization-driven deep deterministic policy gradient (DDPG) approach. In particular, when the DDPG algorithm generates a part of the action (e.g., passive beamforming), we can use the model-based convex approximation to optimize the other part of the action (e.g., active beamforming) efficiently. Our simulation results demonstrate that the optimization-driven DDPG algorithm can improve both the learning rate and reward significantly compared to the conventional DDPG algorithm.
Author Lin, Jiaye
Dong, Xiaoru
Hoang, Dinh Thai
Zout, Yuze
Gong, Shimin
Niyato, Dusit
Author_xml – sequence: 1
  givenname: Jiaye
  surname: Lin
  fullname: Lin, Jiaye
  organization: School of Intelligent Systems Engineering, Sun Yat-sen University,China
– sequence: 2
  givenname: Yuze
  surname: Zout
  fullname: Zout, Yuze
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology,China
– sequence: 3
  givenname: Xiaoru
  surname: Dong
  fullname: Dong, Xiaoru
  organization: School of Intelligent Systems Engineering, Sun Yat-sen University,China
– sequence: 4
  givenname: Shimin
  surname: Gong
  fullname: Gong, Shimin
  organization: School of Intelligent Systems Engineering, Sun Yat-sen University,China
– sequence: 5
  givenname: Dinh Thai
  surname: Hoang
  fullname: Hoang, Dinh Thai
  organization: China School of Electrical and Data Engineering, University of Technology Sydney,Australia
– sequence: 6
  givenname: Dusit
  surname: Niyato
  fullname: Niyato, Dusit
  organization: School of Computer Science and Engineering, Nanyang Technological University,Singapore
BookMark eNotkE1Lw0AURUdRsNb-AjeD-9Q3b5L5WNpYayFSqAXBTZlMX2SkmZRMuvDfW7Gryz1w7uLesqvYRWLsQcBUCLCPi2o1m5ertxwBcIqAMLUSUWq8YBOrjdBohEFrzCUbYaFVpoyQN2yS0jeclEJItDBin89EB76mEJuu99RSHHhFro8hfvET4uuuPqaBz8i1p9r-4RD5cv2euZRCGmjHP0JPe0qJl13bHmPwbghdTHfsunH7RJNzjtnmZb4pX7NqtViWT1UWEOSQCeVrDzvfiNqi9E7utMqdBovCO90oklY5iTWAE7lqXFHkYArMTeOg8LUcs_v_2UBE20MfWtf_bM9nyF88FVdi
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/GLOBECOM42002.2020.9322372
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728182988
1728182980
EISSN 2576-6813
EndPage 6
ExternalDocumentID 9322372
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972434
  funderid: 10.13039/501100001809
– fundername: National Research Foundation (NRF), Singapore
  funderid: 10.13039/501100001381
– fundername: Nanyang Technological University
  grantid: M4082187(4080)
  funderid: 10.13039/501100001475
– fundername: Sun Yat-sen University
  grantid: 19LGPY292
  funderid: 10.13039/501100002402
– fundername: Singapore Energy Market Authority (EMA)
  grantid: NRF2017EWT-EP003-041,NRF2015-NRF-ISF001-2277
  funderid: 10.13039/501100001447
– fundername: National College Students' Innovation and Entrepreneurship Training Program
  grantid: 20201269
  funderid: 10.13039/501100013254
– fundername: Shenzhen Basic Research Program
  grantid: JCYJ20190807154009444
  funderid: 10.13039/501100012156
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-16cbc0dcf1b923ca3d764a70921ca7f6e396a32b00a146fa554085248fa05cb3
IEDL.DBID RIE
IngestDate Wed Aug 27 05:44:00 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-16cbc0dcf1b923ca3d764a70921ca7f6e396a32b00a146fa554085248fa05cb3
PageCount 6
ParticipantIDs ieee_primary_9322372
PublicationCentury 2000
PublicationDate 2020-Dec.
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.
PublicationDecade 2020
PublicationTitle IEEE Global Communications Conference (Online)
PublicationTitleAbbrev GLOCOM
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513290
Score 1.9797243
Snippet Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Approximation algorithms
Array signal processing
Channel estimation
Receivers
Reinforcement learning
Scattering
Wireless communication
Title Deep Reinforcement Learning for Robust Beamforming in IRS-assisted Wireless Communications
URI https://ieeexplore.ieee.org/document/9322372
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qk158gPGdHjzapdsuXXoFQTQiBjEhXkyfhqgLkd2Lv952d0ExHrxt5rBp-pj5ZvrNVwDOmVJxS1CGXLRSKBLcIi4URaGJKOW2pW3kG4UHd6z_GN1MmpMKuFj1whhjcvKZCfxnfpevZyrzpbKGwxqExs7hbrjErejVWtVTXJymhC91RUPMG1e3w3a3MxxEnofgMkGCg_IHay-p5IGktw0GyyEU_JHXIEtloD5_qTP-d4w7oP7dsgfvV8FoF1RMsge2fqgN1sDTpTFzODK5VqrKy4KwlFd9gc4ERzOZLVLYNuLdQ1lvnibwevSAHML220FDT5Z9c84RrjWWLOpg3OuOO31UPq2ApgTTFIVMSYW1sqF0CE8JqmMWiRhzEioRW2YoZ4ISdyaFc6VWONDhsBmJWlbgppJ0H1STWWIOABTaIxBGGZMuy5ahlFhyEwkrrCZY60NQ85P0PC_EM57L-Tn623wMNv1CFXyRE1BNPzJz6qJ-Ks_y5f4Cj--tow
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4MHtSLH2D8tgePbmxr6egVBEEZGMSEeCH9NEQdRLaLv952GyjGg7flPSxNu77v03fP8xSAKyJEWGeIOKZaCQczqh3KBHJ8hRGiui41tkLhqE86T_huXBtvgOuVFkYplZHPlGsfs3_5ciZS2yqrGqwRoNAk3E1T92t-rtZadVRMpUYBXTqL-h6t3vYGjVZzEGHLRDBnwcBzi1es3aWSlZL2LoiWg8gZJK9umnBXfP7yZ_zvKPdA5Vu0Bx9W5WgfbKj4AOz88Bssg-cbpeZwqDK3VJE1BmFhsPoCTQgOZzxdJLCh2LsFszY8jWF3-OgYjG0_CAktXfbNpEe4Ji1ZVMCo3Ro1O05xuYIzDTyUOD4RXHhSaJ8bjCcYkiHBLPRo4AsWaqIQJQwFZlcyk0w1M7DDoLMA1zXzaoKjQ1CKZ7E6ApBJi0EIIoSbczb3Ofc4VZhppmXgSXkMynaSJvPcPmNSzM_J3-FLsNUZRb1Jr9u_PwXbdtFy9sgZKCUfqTo3GCDhF9nSfwHN57Ds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Global+Communications+Conference+%28Online%29&rft.atitle=Deep+Reinforcement+Learning+for+Robust+Beamforming+in+IRS-assisted+Wireless+Communications&rft.au=Lin%2C+Jiaye&rft.au=Zout%2C+Yuze&rft.au=Dong%2C+Xiaoru&rft.au=Gong%2C+Shimin&rft.date=2020-12-01&rft.pub=IEEE&rft.eissn=2576-6813&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FGLOBECOM42002.2020.9322372&rft.externalDocID=9322372