Recognizing Emotions evoked by Movies using Multitask Learning

Understanding the emotional impact of movies has become important for affective movie analysis, ranking, and indexing. Methods for recognizing evoked emotions are usually trained on human annotated data. Concretely, viewers watch video clips and have to manually annotate the emotions they experience...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Affective Computing and Intelligent Interaction and workshops pp. 1 - 8
Main Authors Hayat, Hassan, Ventura, Carles, Lapedriza, Agata
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.09.2021
Subjects
Online AccessGet full text
ISSN2156-8111
DOI10.1109/ACII52823.2021.9597464

Cover

Loading…
Abstract Understanding the emotional impact of movies has become important for affective movie analysis, ranking, and indexing. Methods for recognizing evoked emotions are usually trained on human annotated data. Concretely, viewers watch video clips and have to manually annotate the emotions they experienced while watching the videos. Then, the common practice is to aggregate the different annotations, by computing average scores or majority voting, and train and test models on these aggregated annotations. With this procedure a single aggregated evoked emotion annotation is obtained per each video. However, emotions experienced while watching a video are subjective: different individuals might experience different emotions. In this paper, we model the emotions evoked by videos in a different manner: instead of modeling the aggregated value we jointly model the emotions experienced by each viewer and the aggregated value using a multi-task learning approach. Concretely, we propose two deep learning architectures: a Single-Task (ST) architecture and a Multi-Task (MT) architecture. Our results show that the MT approach can more accurately model each viewer and the aggregated annotation when compared to methods that are directly trained on the aggregated annotations. Furthermore, our approach outperforms the current state-of-the-art results on the COGNIMUSE benchmark.
AbstractList Understanding the emotional impact of movies has become important for affective movie analysis, ranking, and indexing. Methods for recognizing evoked emotions are usually trained on human annotated data. Concretely, viewers watch video clips and have to manually annotate the emotions they experienced while watching the videos. Then, the common practice is to aggregate the different annotations, by computing average scores or majority voting, and train and test models on these aggregated annotations. With this procedure a single aggregated evoked emotion annotation is obtained per each video. However, emotions experienced while watching a video are subjective: different individuals might experience different emotions. In this paper, we model the emotions evoked by videos in a different manner: instead of modeling the aggregated value we jointly model the emotions experienced by each viewer and the aggregated value using a multi-task learning approach. Concretely, we propose two deep learning architectures: a Single-Task (ST) architecture and a Multi-Task (MT) architecture. Our results show that the MT approach can more accurately model each viewer and the aggregated annotation when compared to methods that are directly trained on the aggregated annotations. Furthermore, our approach outperforms the current state-of-the-art results on the COGNIMUSE benchmark.
Author Hayat, Hassan
Lapedriza, Agata
Ventura, Carles
Author_xml – sequence: 1
  givenname: Hassan
  surname: Hayat
  fullname: Hayat, Hassan
  email: hhassan0@uoc.edu
  organization: Universitat Oberta de Catalunya,Estudis d'Informatica, Multimedia i Telecomunicacio / eHealth Center,Barcelona,Spain
– sequence: 2
  givenname: Carles
  surname: Ventura
  fullname: Ventura, Carles
  email: cventuraroy@uoc.edu
  organization: Universitat Oberta de Catalunya,Estudis d'Informatica, Multimedia i Telecomunicacio / eHealth Center,Barcelona,Spain
– sequence: 3
  givenname: Agata
  surname: Lapedriza
  fullname: Lapedriza, Agata
  email: alapedriza@uoc.edu
  organization: Universitat Oberta de Catalunya,Estudis d'Informatica, Multimedia i Telecomunicacio / eHealth Center,Barcelona,Spain
BookMark eNotj11LwzAYRqMouM39AkH6B1rz5js3wiibFjoE0euRtm9H3JbI0g3mr9fhrg6cAw88Y3ITYkBCHoEWANQ-zcqqkswwXjDKoLDSaqHEFRmDUlJQClZdkxEDqXIDAHdkmtIXPXtJjZEj8vyObVwH_-PDOpvv4uBjSBke4wa7rDlly3j0mLJDOvflYTv4waVNVqPbhz91T257t004vXBCPhfzj_I1r99eqnJW555RPuQge6YN166hnbbCoG4a0XIuUejOomyNbTj0ouOtRgMIyihDrWwdVdp0kk_Iw_-uR8TV997v3P60utzlvyFrS0Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACII52823.2021.9597464
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1665400196
9781665400190
EISSN 2156-8111
EndPage 8
ExternalDocumentID 9597464
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-15f27837ab0d7948e7bb4c335e47d9e5c89b31f4d3c7e81e16868095ca0678d53
IEDL.DBID RIE
IngestDate Wed Aug 27 02:03:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-15f27837ab0d7948e7bb4c335e47d9e5c89b31f4d3c7e81e16868095ca0678d53
PageCount 8
ParticipantIDs ieee_primary_9597464
PublicationCentury 2000
PublicationDate 2021-Sept.-28
PublicationDateYYYYMMDD 2021-09-28
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sept.-28
  day: 28
PublicationDecade 2020
PublicationTitle International Conference on Affective Computing and Intelligent Interaction and workshops
PublicationTitleAbbrev ACII
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001950885
Score 1.8025213
Snippet Understanding the emotional impact of movies has become important for affective movie analysis, ranking, and indexing. Methods for recognizing evoked emotions...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Affective computing
Annotations
Computational modeling
Computer architecture
Deep learning
Emotion recognition
Evoked emotion recognition
Motion pictures
Multi-modality
Multi-task Learning
Visualization
Title Recognizing Emotions evoked by Movies using Multitask Learning
URI https://ieeexplore.ieee.org/document/9597464
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3OXi0XdP8aHIRZGxswkTEwW6jSV6HDFZxneD-epO221A8eCuhISXh8b2Xft_7ELpVLgkBF0mBMTwLmM1UILWCQDBJjE2ZFdQLnMdPYjhhj1M-baC7nRYGAEryGYT-sfyXb3Oz9ldlXeWzX8EO0IEr3Cqt1v4-pbQz5bUImESq-9AbjbirKKirAmMS1pN_uKiUIDJoofF2-Yo7sgjXhQ7N5ldnxv9-3xHq7OV6-HkHRMeoAcsT1Nr6NeA6fNvo_qViC23cW7hf-fesMHzmC7BYf-Fx7kByhT0Vfo4rZW66WuC6Beu8gyaD_mtvGNT-CcFbHNEiIDzzPhpJqiPrwk5CojUzlHJgiVXAjVSakoxZahKQBIiQQrqUy6Qewiynp6i5zJdwhrCmLvMyrjayljKbRKlKDROx5SkVTFtyjtp-O2bvVYuMWb0TF38PX6JDfySedhHLK9QsPtZw7bC90DfloX4DhkqjyA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1zPujT1E38Ng8-2q5pPpq8CDI2Nl2HyAZ7G81HhwxWcZvgfr1J220oPvhWQgMh4XLuTc65B4A7YZMQYyPJU4qmHtGp8LgUxmOEI6UTohl2Aud4wLoj8jSm4wq432phjDE5-cz47jN_y9eZWrmrsqZw2S8je2Df4j5FhVprd6OSG5rSUgaMAtF8bPV61NYU2NaBIfLL6T98VHIY6dRAvFlAwR6Z-aul9NX6V2_G_67wCDR2gj34soWiY1Ax8xNQ2zg2wDKA6-DhteALre1fsF04-Cyg-cxmRkP5BePMwuQCOjL8FBba3GQxg2UT1mkDjDrtYavrlQ4K3lsY4KWHaOqcNKJEBtoGHjeRlERhTA2JtDBUcSExSonGKjIcGcQ44zbpUokDMU3xKajOs7k5A1Bim3spWx1pjYmOgkQkirBQ0wQzIjU6B3W3HZP3oknGpNyJi7-Hb8FBdxj3J_3e4PkSHLrjcSSMkF-B6vJjZa4t0i_lTX7A30O2pxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Recognizing+Emotions+evoked+by+Movies+using+Multitask+Learning&rft.au=Hayat%2C+Hassan&rft.au=Ventura%2C+Carles&rft.au=Lapedriza%2C+Agata&rft.date=2021-09-28&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FACII52823.2021.9597464&rft.externalDocID=9597464