A Short-Term Load Forecasting Algorithm Using Support Vector Regression & Artificial Neural Network Method (SVR-ANN)

Load Forecasting is the science of predicting the most economical amount of electrical power to be supplied by electrical utility companies. Energy conservation is in paired with this study which is needed for our unending need of power supply given limited source of energy. An effective way on how...

Full description

Saved in:
Bibliographic Details
Published in2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC) pp. 138 - 143
Main Authors Abad, L.A, Sarabia, S.M., Yuzon, J.M., Pacis, M.C.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2020
Subjects
Online AccessGet full text
DOI10.1109/ICSGRC49013.2020.9232630

Cover

Abstract Load Forecasting is the science of predicting the most economical amount of electrical power to be supplied by electrical utility companies. Energy conservation is in paired with this study which is needed for our unending need of power supply given limited source of energy. An effective way on how to do it is by using an Artificial Intelligence algorithm and as per chosen, Support Vector Regression and Artificial Neural Network are the machine learning algorithm which is a good combination for forecasting, classifying, and regression. Results were verified through statistical tools: 1) Mean Absolute Error (MAE); 2) Mean Absolute Percentage Error (MAPE). Using SVR-ANN algorithm, an averaged absolute error of 175.6893MW which corresponds to 2.47% was obtained from the analysis. The promising results of this study could be used as an alternative predicting tool for power system operators.
AbstractList Load Forecasting is the science of predicting the most economical amount of electrical power to be supplied by electrical utility companies. Energy conservation is in paired with this study which is needed for our unending need of power supply given limited source of energy. An effective way on how to do it is by using an Artificial Intelligence algorithm and as per chosen, Support Vector Regression and Artificial Neural Network are the machine learning algorithm which is a good combination for forecasting, classifying, and regression. Results were verified through statistical tools: 1) Mean Absolute Error (MAE); 2) Mean Absolute Percentage Error (MAPE). Using SVR-ANN algorithm, an averaged absolute error of 175.6893MW which corresponds to 2.47% was obtained from the analysis. The promising results of this study could be used as an alternative predicting tool for power system operators.
Author Sarabia, S.M.
Pacis, M.C.
Yuzon, J.M.
Abad, L.A
Author_xml – sequence: 1
  givenname: L.A
  surname: Abad
  fullname: Abad, L.A
  organization: Mapúa University Muralla St,EECE Department,Intramuros,Manila
– sequence: 2
  givenname: S.M.
  surname: Sarabia
  fullname: Sarabia, S.M.
  organization: Mapúa University Muralla St,EECE Department,Intramuros,Manila
– sequence: 3
  givenname: J.M.
  surname: Yuzon
  fullname: Yuzon, J.M.
  organization: Mapúa University Muralla St,EECE Department,Intramuros,Manila
– sequence: 4
  givenname: M.C.
  surname: Pacis
  fullname: Pacis, M.C.
  organization: Mapúa University Muralla St,EECE Department,Intramuros,Manila
BookMark eNotkE1Lw0AURUfQha3-AjdvJbpIfTPTfC1DsLUQIzRtt2WSvEkH20yZTBH_vVW7Oly4HLh3xK572xNjwHHCOaYvi7yaL_NpilxOBAqcpEKKSOIVG_FYJDyUXPJb5jOodtb5YEXuAIVVLcyso0YN3vQdZPvOOuN3B1gPv7k6HY_nNmyo8dbBkjpHw2BsD4-QOW-0aYzaQ0kn9wf_Zd0nvJPf2Raeqs0yyMry-Y7daLUf6P7CMVvPXlf5W1B8zBd5VgRGoPQB53XbhkjTOlWUaM51jaGMBdZh06IIG03ReQZFJGukJkbZIqaR1rFKMEm0HLOHf68hou3RmYNy39vLEfIH1-VZEw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSGRC49013.2020.9232630
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728153131
9781728153131
EndPage 143
ExternalDocumentID 9232630
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-11bdd50e4b9ae8f11fb053720b5cd025cfe6531e6e3b0ec703d0096ff7a8088f3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:06 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-11bdd50e4b9ae8f11fb053720b5cd025cfe6531e6e3b0ec703d0096ff7a8088f3
PageCount 6
ParticipantIDs ieee_primary_9232630
PublicationCentury 2000
PublicationDate 2020-Aug.
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-Aug.
PublicationDecade 2020
PublicationTitle 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC)
PublicationTitleAbbrev ICSGRC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7591883
Snippet Load Forecasting is the science of predicting the most economical amount of electrical power to be supplied by electrical utility companies. Energy...
SourceID ieee
SourceType Publisher
StartPage 138
SubjectTerms Artificial Intelligence
Artificial Neural Network
load forecasting
regression
Support Vector Regression
Title A Short-Term Load Forecasting Algorithm Using Support Vector Regression & Artificial Neural Network Method (SVR-ANN)
URI https://ieeexplore.ieee.org/document/9232630
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmBxEFs02zj6bHpVir2CJ90VvJY7Yt6q7U7cVfb5JtK4oHT7ssgV0y2Zn5km_mQ-iSi4RTrjmhWoTE4C9FmjIMiS-UEEoC566Ja7cXdUbB4ySclNDtthYGABz5DDx7687ydaZWdqusZpIRFvkGoO-YZVbUam3IObRZe2gN7vutwAQ43-A-Rr318B-6KS5stPdQd_PCgi3y4q1y6anPX70Y__tF-6j6XaCHn7eh5wCVIK2gPMaDucmmydB4W_yUCY2t8KYSH5bajOPXWbZc5PM37GgC2Op5mtF47PbtcR9mBSU2xVc4XjoKkVmb2HbvcBdHF8ddpziNrwfjPol7vZsqGrXvhq0OWYsqkAWjfk7qdal1SCGQTQE8qdcTaVu6MCpDpU0CpBKIzH8JEfiSgjIOQVuYkyQNYYzKE_8QldMshSOEjbMLAiUtImkEEpgINRXAfCGZDBRrHKOKnbHpe9E3Y7qerJO_H5-iXWu1glx3hsr5cgXnJuDn8sJZ-gsncK0F
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4QPOhJDRh352CMJk4ZulGODRFBaWPYwo3M8gpEbQ2Wi7_emSliNB48tWnatJk385bp974PocuAJQENZECoZB5R9ZcgTe55xGGCMcEhCAyJaxT7nZH7MPEmJXS76YUBAAM-A0ufmn_5MhMrvVVWU8mI7TuqQN9Scd_1im6tL3gObda6rcF9v-WqEOeoys-m1vqBH8opJnC0d1H09coCL_JsrXJuiY9fbIz__aY9VP1u0cNPm-Czj0qQVlAe4sFc5dNkqPwt7mVMYi29Kdi7Bjfj8GWWLRf5_BUboADWip7qbjw2O_e4D7MCFJviKxwuDYhIzU6s-TvMwQDGcWQ0p_H1YNwnYRzfVNGofTdsdchaVoEsbOrkpF7nUnoUXN5kECT1esI1qYtNuSekSoFEAr5ameCDwykI5RKkLnSSpMGUWYPEOUDlNEvhEGHl7lxXcF2TNFwONvMkZWA7jNvcFXbjCFX0iE3fCuaM6Xqwjv--fIG2O8OoN-1148cTtKMtWEDtTlE5X67gTIX_nJ8bq38CZCiwUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+11th+IEEE+Control+and+System+Graduate+Research+Colloquium+%28ICSGRC%29&rft.atitle=A+Short-Term+Load+Forecasting+Algorithm+Using+Support+Vector+Regression+%26+Artificial+Neural+Network+Method+%28SVR-ANN%29&rft.au=Abad%2C+L.A&rft.au=Sarabia%2C+S.M.&rft.au=Yuzon%2C+J.M.&rft.au=Pacis%2C+M.C.&rft.date=2020-08-01&rft.pub=IEEE&rft.spage=138&rft.epage=143&rft_id=info:doi/10.1109%2FICSGRC49013.2020.9232630&rft.externalDocID=9232630