A Short-Term Load Forecasting Algorithm Using Support Vector Regression & Artificial Neural Network Method (SVR-ANN)
Load Forecasting is the science of predicting the most economical amount of electrical power to be supplied by electrical utility companies. Energy conservation is in paired with this study which is needed for our unending need of power supply given limited source of energy. An effective way on how...
Saved in:
Published in | 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC) pp. 138 - 143 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2020
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICSGRC49013.2020.9232630 |
Cover
Abstract | Load Forecasting is the science of predicting the most economical amount of electrical power to be supplied by electrical utility companies. Energy conservation is in paired with this study which is needed for our unending need of power supply given limited source of energy. An effective way on how to do it is by using an Artificial Intelligence algorithm and as per chosen, Support Vector Regression and Artificial Neural Network are the machine learning algorithm which is a good combination for forecasting, classifying, and regression. Results were verified through statistical tools: 1) Mean Absolute Error (MAE); 2) Mean Absolute Percentage Error (MAPE). Using SVR-ANN algorithm, an averaged absolute error of 175.6893MW which corresponds to 2.47% was obtained from the analysis. The promising results of this study could be used as an alternative predicting tool for power system operators. |
---|---|
AbstractList | Load Forecasting is the science of predicting the most economical amount of electrical power to be supplied by electrical utility companies. Energy conservation is in paired with this study which is needed for our unending need of power supply given limited source of energy. An effective way on how to do it is by using an Artificial Intelligence algorithm and as per chosen, Support Vector Regression and Artificial Neural Network are the machine learning algorithm which is a good combination for forecasting, classifying, and regression. Results were verified through statistical tools: 1) Mean Absolute Error (MAE); 2) Mean Absolute Percentage Error (MAPE). Using SVR-ANN algorithm, an averaged absolute error of 175.6893MW which corresponds to 2.47% was obtained from the analysis. The promising results of this study could be used as an alternative predicting tool for power system operators. |
Author | Sarabia, S.M. Pacis, M.C. Yuzon, J.M. Abad, L.A |
Author_xml | – sequence: 1 givenname: L.A surname: Abad fullname: Abad, L.A organization: Mapúa University Muralla St,EECE Department,Intramuros,Manila – sequence: 2 givenname: S.M. surname: Sarabia fullname: Sarabia, S.M. organization: Mapúa University Muralla St,EECE Department,Intramuros,Manila – sequence: 3 givenname: J.M. surname: Yuzon fullname: Yuzon, J.M. organization: Mapúa University Muralla St,EECE Department,Intramuros,Manila – sequence: 4 givenname: M.C. surname: Pacis fullname: Pacis, M.C. organization: Mapúa University Muralla St,EECE Department,Intramuros,Manila |
BookMark | eNotkE1Lw0AURUfQha3-AjdvJbpIfTPTfC1DsLUQIzRtt2WSvEkH20yZTBH_vVW7Oly4HLh3xK572xNjwHHCOaYvi7yaL_NpilxOBAqcpEKKSOIVG_FYJDyUXPJb5jOodtb5YEXuAIVVLcyso0YN3vQdZPvOOuN3B1gPv7k6HY_nNmyo8dbBkjpHw2BsD4-QOW-0aYzaQ0kn9wf_Zd0nvJPf2Raeqs0yyMry-Y7daLUf6P7CMVvPXlf5W1B8zBd5VgRGoPQB53XbhkjTOlWUaM51jaGMBdZh06IIG03ReQZFJGukJkbZIqaR1rFKMEm0HLOHf68hou3RmYNy39vLEfIH1-VZEw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSGRC49013.2020.9232630 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728153131 9781728153131 |
EndPage | 143 |
ExternalDocumentID | 9232630 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-11bdd50e4b9ae8f11fb053720b5cd025cfe6531e6e3b0ec703d0096ff7a8088f3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:06 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-11bdd50e4b9ae8f11fb053720b5cd025cfe6531e6e3b0ec703d0096ff7a8088f3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9232630 |
PublicationCentury | 2000 |
PublicationDate | 2020-Aug. |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-Aug. |
PublicationDecade | 2020 |
PublicationTitle | 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC) |
PublicationTitleAbbrev | ICSGRC |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7591883 |
Snippet | Load Forecasting is the science of predicting the most economical amount of electrical power to be supplied by electrical utility companies. Energy... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 138 |
SubjectTerms | Artificial Intelligence Artificial Neural Network load forecasting regression Support Vector Regression |
Title | A Short-Term Load Forecasting Algorithm Using Support Vector Regression & Artificial Neural Network Method (SVR-ANN) |
URI | https://ieeexplore.ieee.org/document/9232630 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmBxEFs02zj6bHpVir2CJ90VvJY7Yt6q7U7cVfb5JtK4oHT7ssgV0y2Zn5km_mQ-iSi4RTrjmhWoTE4C9FmjIMiS-UEEoC566Ja7cXdUbB4ySclNDtthYGABz5DDx7687ydaZWdqusZpIRFvkGoO-YZVbUam3IObRZe2gN7vutwAQ43-A-Rr318B-6KS5stPdQd_PCgi3y4q1y6anPX70Y__tF-6j6XaCHn7eh5wCVIK2gPMaDucmmydB4W_yUCY2t8KYSH5bajOPXWbZc5PM37GgC2Op5mtF47PbtcR9mBSU2xVc4XjoKkVmb2HbvcBdHF8ddpziNrwfjPol7vZsqGrXvhq0OWYsqkAWjfk7qdal1SCGQTQE8qdcTaVu6MCpDpU0CpBKIzH8JEfiSgjIOQVuYkyQNYYzKE_8QldMshSOEjbMLAiUtImkEEpgINRXAfCGZDBRrHKOKnbHpe9E3Y7qerJO_H5-iXWu1glx3hsr5cgXnJuDn8sJZ-gsncK0F |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4QPOhJDRh352CMJk4ZulGODRFBaWPYwo3M8gpEbQ2Wi7_emSliNB48tWnatJk385bp974PocuAJQENZECoZB5R9ZcgTe55xGGCMcEhCAyJaxT7nZH7MPEmJXS76YUBAAM-A0ufmn_5MhMrvVVWU8mI7TuqQN9Scd_1im6tL3gObda6rcF9v-WqEOeoys-m1vqBH8opJnC0d1H09coCL_JsrXJuiY9fbIz__aY9VP1u0cNPm-Czj0qQVlAe4sFc5dNkqPwt7mVMYi29Kdi7Bjfj8GWWLRf5_BUboADWip7qbjw2O_e4D7MCFJviKxwuDYhIzU6s-TvMwQDGcWQ0p_H1YNwnYRzfVNGofTdsdchaVoEsbOrkpF7nUnoUXN5kECT1esI1qYtNuSekSoFEAr5ameCDwykI5RKkLnSSpMGUWYPEOUDlNEvhEGHl7lxXcF2TNFwONvMkZWA7jNvcFXbjCFX0iE3fCuaM6Xqwjv--fIG2O8OoN-1148cTtKMtWEDtTlE5X67gTIX_nJ8bq38CZCiwUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+11th+IEEE+Control+and+System+Graduate+Research+Colloquium+%28ICSGRC%29&rft.atitle=A+Short-Term+Load+Forecasting+Algorithm+Using+Support+Vector+Regression+%26+Artificial+Neural+Network+Method+%28SVR-ANN%29&rft.au=Abad%2C+L.A&rft.au=Sarabia%2C+S.M.&rft.au=Yuzon%2C+J.M.&rft.au=Pacis%2C+M.C.&rft.date=2020-08-01&rft.pub=IEEE&rft.spage=138&rft.epage=143&rft_id=info:doi/10.1109%2FICSGRC49013.2020.9232630&rft.externalDocID=9232630 |