Simultaneous Lane-Keeping and Obstacle Avoidance by Combining Model Predictive Control and Control Barrier Functions

We combine Model Predictive Control (MPC) and Control Barrier Function (CBF) design methods to create a hierarchical control law for simultaneous lane-keeping (LK) and obstacle avoidance (OA): at the low level, MPC performs LK via trajectory tracking during nominal operation; and at the high level,...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the IEEE Conference on Decision & Control pp. 5285 - 5290
Main Authors Bruggemann, Sven, Steeves, Drew, Krstic, Miroslav
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.12.2022
Subjects
Online AccessGet full text
ISSN2576-2370
DOI10.1109/CDC51059.2022.9992613

Cover

Loading…
Abstract We combine Model Predictive Control (MPC) and Control Barrier Function (CBF) design methods to create a hierarchical control law for simultaneous lane-keeping (LK) and obstacle avoidance (OA): at the low level, MPC performs LK via trajectory tracking during nominal operation; and at the high level, various CBF-based safety filters that ensure LK and OA are designed and compared across practical scenarios. In particular, we show that Exponential Safety (ESf) and Prescribed-Time Safety (PTSf) filters, which override the MPC control when necessary, result in feasible Quadratic Programs when OA-safety is prioritized. We additionally investigate control designs subject to input constraints by using Input-Constrained-CBFs. Finally, we compare the performance of combinations of ESf, PTSf, and their input-constrained counterparts with respect to the LK and OA goals in two simulation studies for early- and late-detected obstacle scenarios.
AbstractList We combine Model Predictive Control (MPC) and Control Barrier Function (CBF) design methods to create a hierarchical control law for simultaneous lane-keeping (LK) and obstacle avoidance (OA): at the low level, MPC performs LK via trajectory tracking during nominal operation; and at the high level, various CBF-based safety filters that ensure LK and OA are designed and compared across practical scenarios. In particular, we show that Exponential Safety (ESf) and Prescribed-Time Safety (PTSf) filters, which override the MPC control when necessary, result in feasible Quadratic Programs when OA-safety is prioritized. We additionally investigate control designs subject to input constraints by using Input-Constrained-CBFs. Finally, we compare the performance of combinations of ESf, PTSf, and their input-constrained counterparts with respect to the LK and OA goals in two simulation studies for early- and late-detected obstacle scenarios.
Author Krstic, Miroslav
Steeves, Drew
Bruggemann, Sven
Author_xml – sequence: 1
  givenname: Sven
  surname: Bruggemann
  fullname: Bruggemann, Sven
  email: sbruegge@eng.ucsd.edu
  organization: University of California,Mechanical & Aerospace Engineering Department,San Diego,CA,USA,92093-0411
– sequence: 2
  givenname: Drew
  surname: Steeves
  fullname: Steeves, Drew
  email: dsteeves@eng.ucsd.edu
  organization: University of California,Mechanical & Aerospace Engineering Department,San Diego,CA,USA,92093-0411
– sequence: 3
  givenname: Miroslav
  surname: Krstic
  fullname: Krstic, Miroslav
  email: krstic@eng.ucsd.edu
  organization: University of California,Mechanical & Aerospace Engineering Department,San Diego,CA,USA,92093-0411
BookMark eNo1kN1KAzEQhaMo2NY-gQh5ga3526S5rKtVcaWCel3yMyuRbVKy20Lf3lXr1TcwZw5zzhidxRQBoWtKZpQSfVPdVSUlpZ4xwthMa80k5SdoqtWcSlkKqSRlp2jESiULxhW5QOOu-yKEay34CPVvYbNrexMh7TpcDyyeAbYhfmITPV7ZrjeuBbzYp-BNdIDtAVdpY0P80bwkDy1-zeCD68MehlXsc2p_j__nW5NzgIyXuziIUuwu0Xlj2g6mR07Qx_L-vXos6tXDU7Woi8AI7wtKPGeNYAKMU4qRRlo7fG2GlESW2jtCqdWNBOWEtSCcZ4bTuRMSDAVv-ARd_fkGAFhvc9iYfFgfS-LfhRlfkg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC51059.2022.9992613
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665467612
1665467614
EISSN 2576-2370
EndPage 5290
ExternalDocumentID 9992613
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-10d32f424eac7720f6bb994a9990659dc011b9f6e7c4bbe4cd2a318c46ea1eda3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:20:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-10d32f424eac7720f6bb994a9990659dc011b9f6e7c4bbe4cd2a318c46ea1eda3
PageCount 6
ParticipantIDs ieee_primary_9992613
PublicationCentury 2000
PublicationDate 2022-Dec.-6
PublicationDateYYYYMMDD 2022-12-06
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings of the IEEE Conference on Decision & Control
PublicationTitleAbbrev CDC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039943
Score 1.88084
Snippet We combine Model Predictive Control (MPC) and Control Barrier Function (CBF) design methods to create a hierarchical control law for simultaneous lane-keeping...
SourceID ieee
SourceType Publisher
StartPage 5285
SubjectTerms Collision avoidance
Control design
Design methodology
Predictive control
Safety
Trajectory tracking
Title Simultaneous Lane-Keeping and Obstacle Avoidance by Combining Model Predictive Control and Control Barrier Functions
URI https://ieeexplore.ieee.org/document/9992613
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH60PenFpRV35uDRpFkm21GjpbiDFnors7xAUVIpqaC_3jeTtC548JQhMEzy8vje9_I2gJNCJcqXAXd0mimH_I3CybjQjiDuihFXIlI22-IuHo741Tgat-B0VQuDiDb5DF2ztLF8PVML86usT2SGCH_YhjY5bnWt1hJ1yc7ysKnQ8b2sn1_kljqQBxgEbrPxxwQVa0AGG3C7PLrOG3l2F5V01cevroz_fbZN6H2V6rGHlRHaghaW27D-rctgF6rHqUkbFCWSl89u6OpcI5o6KSZKze4lEURSHnb2NptqowRMvjPCCWlnRzAzLe2FzjARHYONLK-z2-3m5fpczM3oOzYgM2k1uQejweVTPnSaYQvONPDCiuBYh0HBA05ITIzbK2IpSaaC3suEXrUiIJBZEWOiuJTIlQ4E4YHiMQoftQh3oFPOStwFFnpKY6KTRKUhj7UUcSK1J4g5pCr1Fe5B18hv8lr305g0otv_-_YBrJlvaFNI4kPoVPMFHhERqOSx1YBPRMq2EA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPagXH634dg8eTZsm2zyOGi3VPhRsobeyjwkUJZWSCvrrnd2m9YEHT1kCyyaT4ZtvMi-Ai1SFqiE97ugoVg75G6kTc6EdQdwVm1yJprLZFv2gPeT3o-aoBJerWhhEtMlnWDNLG8vXUzU3v8rqRGaI8PtrsE52n8eLaq0l7pKl5X5Ro9Nw43pyk1jyQD6g59WKrT9mqFgT0tqG3vLwRebIc22ey5r6-NWX8b9PtwPVr2I99rgyQ7tQwmwPtr71GaxA_jQxiYMiQ_LzWZeuTgfRVEoxkWn2IIkikvqwq7fpRBs1YPKdEVJIOz2CmXlpL3SGiekYdGTJIr_dbl6ur8XMDL9jLTKUVperMGzdDpK2U4xbcCae6-cEyNr3Uu5xwmLi3G4aSEkyFfReJviqFUGBjNMAQ8WlRK60JwgRFA9QNFALfx_K2TTDA2C-qzSGOgxV5PNASxGEUruCuEOkoobCQ6gY-Y1fFx01xoXojv6-fQ4b7UGvO-7e9TvHsGm-p00oCU6gnM_meEq0IJdnVhs-Af2NuWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=Simultaneous+Lane-Keeping+and+Obstacle+Avoidance+by+Combining+Model+Predictive+Control+and+Control+Barrier+Functions&rft.au=Bruggemann%2C+Sven&rft.au=Steeves%2C+Drew&rft.au=Krstic%2C+Miroslav&rft.date=2022-12-06&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=5285&rft.epage=5290&rft_id=info:doi/10.1109%2FCDC51059.2022.9992613&rft.externalDocID=9992613