Introduction to Finite Mixtures
This chapter describes the basic ideas of the subject, present several alternative representations and perspectives on these models, and discusses some of the elements of inference about the unknowns in the models. It focuses on the simplest set-up, of finite mixture models and also discusses how va...
Saved in:
Published in | Handbook of Mixture Analysis pp. 3 - 20 |
---|---|
Main Author | |
Format | Book Chapter |
Language | English |
Published |
CRC Press
2019
|
Edition | 1 |
Subjects | |
Online Access | Get full text |
ISBN | 9781498763813 1498763812 |
DOI | 10.1201/9780429055911-1 |
Cover
Abstract | This chapter describes the basic ideas of the subject, present several alternative representations and perspectives on these models, and discusses some of the elements of inference about the unknowns in the models. It focuses on the simplest set-up, of finite mixture models and also discusses how various simplifying assumptions can be relaxed to generate the rich landscape of modelling and inference ideas. The kind of countably infinite mixture that has been most important in applications is the Dirichlet process mixture, and its relatives, that form a central methodology in Bayesian nonparametric modelling. Mixture models have been around for over 150 years, as an intuitively simple and practical tool for enriching the collection of probability distributions available for modelling data. Where data are indexed spatially rather than temporally, mixture models can play an analogous role, and as usual the models proposed can often be viewed as generalizations or translations from time to space. |
---|---|
AbstractList | This chapter describes the basic ideas of the subject, present several alternative representations and perspectives on these models, and discusses some of the elements of inference about the unknowns in the models. It focuses on the simplest set-up, of finite mixture models and also discusses how various simplifying assumptions can be relaxed to generate the rich landscape of modelling and inference ideas. The kind of countably infinite mixture that has been most important in applications is the Dirichlet process mixture, and its relatives, that form a central methodology in Bayesian nonparametric modelling. Mixture models have been around for over 150 years, as an intuitively simple and practical tool for enriching the collection of probability distributions available for modelling data. Where data are indexed spatially rather than temporally, mixture models can play an analogous role, and as usual the models proposed can often be viewed as generalizations or translations from time to space. |
Author | Green, Peter J. |
Author_xml | – sequence: 1 givenname: Peter J. surname: Green fullname: Green, Peter J. organization: University of Bristol, UK and UTS Sydney, Australia |
BookMark | eNpVj81OAyEYRTFqotZZu3ReYPT7YBhgaRpbm9S40TUBhkmIIyRA_Xl768-mq5t7Fyf3XJCTmKIn5ArhBingrRISeqqAc4XY4RFpDpbj3469kmJgEtkZaUoJFvqeC6EEnpPrTaw5jTtXQ4ptTe0qxFB9-xg-6y77cklOJzMX3_zngrys7p-XD932ab1Z3m27gApqJ70ydpgm5sCiocwZ6qVxw7h_oXAQkqFHVBTAcjopbozn1nEJ2AsPg2cLsv7jhjil_GY-Up5HXc3XnPKUTXSh2JRei0bQP-b6wFOjfve57BUo-wbIVk-d |
ContentType | Book Chapter |
Copyright | 2019 by Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2019 by Taylor & Francis Group, LLC |
DOI | 10.1201/9780429055911-1 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Introduction to Finite Mixtures |
EISBN | 9780429055911 0429055919 |
Edition | 1 |
Editor | Frühwirth-Schnatter, Sylvia Celeux, Gilles Robert, Christian P. |
Editor_xml | – sequence: 1 givenname: Sylvia surname: Frühwirth-Schnatter fullname: Frühwirth-Schnatter, Sylvia – sequence: 2 givenname: Gilles surname: Celeux fullname: Celeux, Gilles – sequence: 3 givenname: Christian P. surname: Robert fullname: Robert, Christian P. |
EndPage | 20 |
ExternalDocumentID | 10_1201_9780429055911_1_version2 |
GroupedDBID | 20A 38. 5~G AABBV ABARN ABEQL ABQPQ ACRME ACXMI ADVEM ADYHE AERYV AESSL AEUHU AEZSH AFIZQ AFOJC AHWGJ AIENH AIXXW AJFER AKSCQ ALKVF ALMA_UNASSIGNED_HOLDINGS ALV ATPON AXTGW AZZ BBABE BBPSY BQVRA CZZ EBATF GEOUK INALI JEIOI JTX KGDJW MPXOF MSRKR MTFXQ NEQ NEV UCHLF |
ID | FETCH-LOGICAL-i190t-8e9ab6ff3c0b1a23ca2e8ac6d5919167831e119200b52f95aae5bc580147e06e3 |
ISBN | 9781498763813 1498763812 |
IngestDate | Mon Apr 21 06:27:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | MCMC Algorithm Beta Binomial Distribution Allocation Variables Finite Mixture Model Component Specific Parameters Bayesian Nonparametric Modelling Dirichlet Process Mixture Model Bivariate Normal Mixture Dirichlet Process Mixture Body Length Ratios Conditional Expectation Normal Mixture Reversible Jump MCMC Em Algorithm MCMC Sampling Latent Allocation Variables MCMC Update Finite Mixture Continuous Mixtures Nonparametric Mixture Models Mixture Model Dirichlet Multinomial Distribution Hidden Markov Models Hidden Markov Random Field Model Separate Independent Samples |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-i190t-8e9ab6ff3c0b1a23ca2e8ac6d5919167831e119200b52f95aae5bc580147e06e3 |
OpenAccessLink | https://api.taylorfrancis.com/content/chapters/edit/download?identifierName=doi&identifierValue=10.1201/9780429055911-1&type=chapterpdf |
PageCount | 18 |
ParticipantIDs | informaworld_taylorfrancisbooks_10_1201_9780429055911_1_version2 |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationTitle | Handbook of Mixture Analysis |
PublicationYear | 2019 |
Publisher | CRC Press |
Publisher_xml | – name: CRC Press |
SSID | ssib044577971 ssj0002094081 |
Score | 1.5855603 |
Snippet | This chapter describes the basic ideas of the subject, present several alternative representations and perspectives on these models, and discusses some of the... |
SourceID | informaworld |
SourceType | Publisher |
StartPage | 3 |
Title | Introduction to Finite Mixtures |
URI | https://www.taylorfrancis.com/books/9780429055911/chapters/10.1201/9780429055911-1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86L-rFT_y2B2_S2SRN096EsTEH8yAb7FaSNIV56MBVEf96X9KPtVMQ9RJKKGmaF_p-7_X9fkHohnGScKGISxVVLnho5QojeKn8NJWpMCGEIQqPH4Ph1B_N2Gx1WINll-Syqz6-5ZX8xarQB3Y1LNlfWLYeFDrgGuwLLVgY2jXw206zlqf6ZInptkUs83f7J6CSGGlV1dRluLejbnOHPJgi9aRQjzUQdDA3-LMaq5UPMBSkVj6g99RrVW8UgSLEQUZ6LsS08bGiDa9nGWlfv6fE6vhblSISeRB9mAK4leuoC_pMKAH3xq07Yxy_FUk_8JGbPPQ7aAucbb9Op_g-4zwq8eiz_Ssa-YBRLAGvnDCpdLmqFyj1meBpd2vzWlObbeCEyR7aNdwRx5A6YN77aENnB2hnXEvjLg_RdXPZnXzhFMvuVMt-hKaD_qQ3dMtTKtw5gKncDXUkZJCmVHkSC0KVIDoUKkhgUoC9eUixxoCjPU8ykkZMCM2kYka1h2sv0PQYdbJFpk-QgwOmheAaWkDaHKCk8GSAhaZKBwTTU3TffME4t0mdtDiBxey4ZfyTIc7-P8Q52l7tuwvUyV9e9SUgs1xelfb9BMD5MkY |
linkProvider | ProQuest Ebooks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Handbook+of+Mixture+Analysis&rft.au=Green%2C+Peter+J.&rft.atitle=Introduction+to+Finite+Mixtures&rft.date=2019-01-01&rft.pub=CRC+Press&rft.isbn=9781498763813&rft.spage=3&rft.epage=20&rft_id=info:doi/10.1201%2F9780429055911-1&rft.externalDocID=10_1201_9780429055911_1_version2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781498763813/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781498763813/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781498763813/sc.gif&client=summon&freeimage=true |