Introduction to Finite Mixtures

This chapter describes the basic ideas of the subject, present several alternative representations and perspectives on these models, and discusses some of the elements of inference about the unknowns in the models. It focuses on the simplest set-up, of finite mixture models and also discusses how va...

Full description

Saved in:
Bibliographic Details
Published inHandbook of Mixture Analysis pp. 3 - 20
Main Author Green, Peter J.
Format Book Chapter
LanguageEnglish
Published CRC Press 2019
Edition1
Subjects
Online AccessGet full text
ISBN9781498763813
1498763812
DOI10.1201/9780429055911-1

Cover

Abstract This chapter describes the basic ideas of the subject, present several alternative representations and perspectives on these models, and discusses some of the elements of inference about the unknowns in the models. It focuses on the simplest set-up, of finite mixture models and also discusses how various simplifying assumptions can be relaxed to generate the rich landscape of modelling and inference ideas. The kind of countably infinite mixture that has been most important in applications is the Dirichlet process mixture, and its relatives, that form a central methodology in Bayesian nonparametric modelling. Mixture models have been around for over 150 years, as an intuitively simple and practical tool for enriching the collection of probability distributions available for modelling data. Where data are indexed spatially rather than temporally, mixture models can play an analogous role, and as usual the models proposed can often be viewed as generalizations or translations from time to space.
AbstractList This chapter describes the basic ideas of the subject, present several alternative representations and perspectives on these models, and discusses some of the elements of inference about the unknowns in the models. It focuses on the simplest set-up, of finite mixture models and also discusses how various simplifying assumptions can be relaxed to generate the rich landscape of modelling and inference ideas. The kind of countably infinite mixture that has been most important in applications is the Dirichlet process mixture, and its relatives, that form a central methodology in Bayesian nonparametric modelling. Mixture models have been around for over 150 years, as an intuitively simple and practical tool for enriching the collection of probability distributions available for modelling data. Where data are indexed spatially rather than temporally, mixture models can play an analogous role, and as usual the models proposed can often be viewed as generalizations or translations from time to space.
Author Green, Peter J.
Author_xml – sequence: 1
  givenname: Peter J.
  surname: Green
  fullname: Green, Peter J.
  organization: University of Bristol, UK and UTS Sydney, Australia
BookMark eNpVj81OAyEYRTFqotZZu3ReYPT7YBhgaRpbm9S40TUBhkmIIyRA_Xl768-mq5t7Fyf3XJCTmKIn5ArhBingrRISeqqAc4XY4RFpDpbj3469kmJgEtkZaUoJFvqeC6EEnpPrTaw5jTtXQ4ptTe0qxFB9-xg-6y77cklOJzMX3_zngrys7p-XD932ab1Z3m27gApqJ70ydpgm5sCiocwZ6qVxw7h_oXAQkqFHVBTAcjopbozn1nEJ2AsPg2cLsv7jhjil_GY-Up5HXc3XnPKUTXSh2JRei0bQP-b6wFOjfve57BUo-wbIVk-d
ContentType Book Chapter
Copyright 2019 by Taylor & Francis Group, LLC
Copyright_xml – notice: 2019 by Taylor & Francis Group, LLC
DOI 10.1201/9780429055911-1
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Introduction to Finite Mixtures
EISBN 9780429055911
0429055919
Edition 1
Editor Frühwirth-Schnatter, Sylvia
Celeux, Gilles
Robert, Christian P.
Editor_xml – sequence: 1
  givenname: Sylvia
  surname: Frühwirth-Schnatter
  fullname: Frühwirth-Schnatter, Sylvia
– sequence: 2
  givenname: Gilles
  surname: Celeux
  fullname: Celeux, Gilles
– sequence: 3
  givenname: Christian P.
  surname: Robert
  fullname: Robert, Christian P.
EndPage 20
ExternalDocumentID 10_1201_9780429055911_1_version2
GroupedDBID 20A
38.
5~G
AABBV
ABARN
ABEQL
ABQPQ
ACRME
ACXMI
ADVEM
ADYHE
AERYV
AESSL
AEUHU
AEZSH
AFIZQ
AFOJC
AHWGJ
AIENH
AIXXW
AJFER
AKSCQ
ALKVF
ALMA_UNASSIGNED_HOLDINGS
ALV
ATPON
AXTGW
AZZ
BBABE
BBPSY
BQVRA
CZZ
EBATF
GEOUK
INALI
JEIOI
JTX
KGDJW
MPXOF
MSRKR
MTFXQ
NEQ
NEV
UCHLF
ID FETCH-LOGICAL-i190t-8e9ab6ff3c0b1a23ca2e8ac6d5919167831e119200b52f95aae5bc580147e06e3
ISBN 9781498763813
1498763812
IngestDate Mon Apr 21 06:27:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords MCMC Algorithm
Beta Binomial Distribution
Allocation Variables
Finite Mixture Model
Component Specific Parameters
Bayesian Nonparametric Modelling
Dirichlet Process Mixture Model
Bivariate Normal Mixture
Dirichlet Process Mixture
Body Length Ratios
Conditional Expectation
Normal Mixture
Reversible Jump MCMC
Em Algorithm
MCMC Sampling
Latent Allocation Variables
MCMC Update
Finite Mixture
Continuous Mixtures
Nonparametric Mixture Models
Mixture Model
Dirichlet Multinomial Distribution
Hidden Markov Models
Hidden Markov Random Field Model
Separate Independent Samples
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i190t-8e9ab6ff3c0b1a23ca2e8ac6d5919167831e119200b52f95aae5bc580147e06e3
OpenAccessLink https://api.taylorfrancis.com/content/chapters/edit/download?identifierName=doi&identifierValue=10.1201/9780429055911-1&type=chapterpdf
PageCount 18
ParticipantIDs informaworld_taylorfrancisbooks_10_1201_9780429055911_1_version2
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationTitle Handbook of Mixture Analysis
PublicationYear 2019
Publisher CRC Press
Publisher_xml – name: CRC Press
SSID ssib044577971
ssj0002094081
Score 1.5855603
Snippet This chapter describes the basic ideas of the subject, present several alternative representations and perspectives on these models, and discusses some of the...
SourceID informaworld
SourceType Publisher
StartPage 3
Title Introduction to Finite Mixtures
URI https://www.taylorfrancis.com/books/9780429055911/chapters/10.1201/9780429055911-1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86L-rFT_y2B2_S2SRN096EsTEH8yAb7FaSNIV56MBVEf96X9KPtVMQ9RJKKGmaF_p-7_X9fkHohnGScKGISxVVLnho5QojeKn8NJWpMCGEIQqPH4Ph1B_N2Gx1WINll-Syqz6-5ZX8xarQB3Y1LNlfWLYeFDrgGuwLLVgY2jXw206zlqf6ZInptkUs83f7J6CSGGlV1dRluLejbnOHPJgi9aRQjzUQdDA3-LMaq5UPMBSkVj6g99RrVW8UgSLEQUZ6LsS08bGiDa9nGWlfv6fE6vhblSISeRB9mAK4leuoC_pMKAH3xq07Yxy_FUk_8JGbPPQ7aAucbb9Op_g-4zwq8eiz_Ssa-YBRLAGvnDCpdLmqFyj1meBpd2vzWlObbeCEyR7aNdwRx5A6YN77aENnB2hnXEvjLg_RdXPZnXzhFMvuVMt-hKaD_qQ3dMtTKtw5gKncDXUkZJCmVHkSC0KVIDoUKkhgUoC9eUixxoCjPU8ykkZMCM2kYka1h2sv0PQYdbJFpk-QgwOmheAaWkDaHKCk8GSAhaZKBwTTU3TffME4t0mdtDiBxey4ZfyTIc7-P8Q52l7tuwvUyV9e9SUgs1xelfb9BMD5MkY
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Handbook+of+Mixture+Analysis&rft.au=Green%2C+Peter+J.&rft.atitle=Introduction+to+Finite+Mixtures&rft.date=2019-01-01&rft.pub=CRC+Press&rft.isbn=9781498763813&rft.spage=3&rft.epage=20&rft_id=info:doi/10.1201%2F9780429055911-1&rft.externalDocID=10_1201_9780429055911_1_version2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781498763813/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781498763813/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781498763813/sc.gif&client=summon&freeimage=true