Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization

Recent advances in deep learning (DL) have greatly improved the performance of positron emission tomography (PET) denoising performance. However, DL model performance can vary a lot across subjects, due to the large variability of the count levels and spatial distributions. A generalizable DL model...

Full description

Saved in:
Bibliographic Details
Published inIEEE Nuclear Science Symposium conference record (1997) Vol. 2024; p. 1
Main Authors Liu, X., Marin, T., Eslahi, S. Vafay, Tiss, A., Chemli, Y., Johson, K. A., Fakhri, G. El, Ouyang, J.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advances in deep learning (DL) have greatly improved the performance of positron emission tomography (PET) denoising performance. However, DL model performance can vary a lot across subjects, due to the large variability of the count levels and spatial distributions. A generalizable DL model that mitigates the subject-wise variations is highly expected toward a reliable and trustworthy system for clinical application. In this work, we propose a contrastive adversarial learning framework for subject-wise domain generalization (DG). Specifically, we configure a contrastive discriminator in addition to the UNet-based denoising module to check the subject-related information in the bottleneck feature, while the denoising module is adversarially trained to enforce the extraction of subject-invariant features. The sampled low-count realizations from the list-mode data are used as anchor-positive pairs to be close to each other, while the other subjects are used as negative samples to be distributed far away. We evaluated on 97{ }^{18} \mathrm{~F}-MK6240 tau PET studies, each having 20 noise realizations with 25 \% fractions of events. Training, validation, and testing were implemented using 1400, 120, and 420 pairs of 3D image volumes in a subject-independent manner. The proposed contrastive adversarial DG demonstrated superior denoising performance than conventional UNet without subject-wise DG and cross-entropy-based adversarial DG.
AbstractList Recent advances in deep learning (DL) have greatly improved the performance of positron emission tomography (PET) denoising performance. However, DL model performance can vary a lot across subjects, due to the large variability of the count levels and spatial distributions. A generalizable DL model that mitigates the subject-wise variations is highly expected toward a reliable and trustworthy system for clinical application. In this work, we propose a contrastive adversarial learning framework for subject-wise domain generalization (DG). Specifically, we configure a contrastive discriminator in addition to the UNet-based denoising module to check the subject-related information in the bottleneck feature, while the denoising module is adversarially trained to enforce the extraction of subject-invariant features. The sampled low-count realizations from the list-mode data are used as anchor-positive pairs to be close to each other, while the other subjects are used as negative samples to be distributed far away. We evaluated on 97 F-MK6240 tau PET studies, each having 20 noise realizations with 25% fractions of events. Training, validation, and testing were implemented using 1400, 120, and 420 pairs of 3D image volumes in a subject-independent manner. The proposed contrastive adversarial DG demonstrated superior denoising performance than conventional UNet without subject-wise DG and cross-entropy-based adversarial DG.
Recent advances in deep learning (DL) have greatly improved the performance of positron emission tomography (PET) denoising performance. However, DL model performance can vary a lot across subjects, due to the large variability of the count levels and spatial distributions. A generalizable DL model that mitigates the subject-wise variations is highly expected toward a reliable and trustworthy system for clinical application. In this work, we propose a contrastive adversarial learning framework for subject-wise domain generalization (DG). Specifically, we configure a contrastive discriminator in addition to the UNet-based denoising module to check the subject-related information in the bottleneck feature, while the denoising module is adversarially trained to enforce the extraction of subject-invariant features. The sampled low-count realizations from the list-mode data are used as anchor-positive pairs to be close to each other, while the other subjects are used as negative samples to be distributed far away. We evaluated on 97{ }^{18} \mathrm{~F}-MK6240 tau PET studies, each having 20 noise realizations with 25 \% fractions of events. Training, validation, and testing were implemented using 1400, 120, and 420 pairs of 3D image volumes in a subject-independent manner. The proposed contrastive adversarial DG demonstrated superior denoising performance than conventional UNet without subject-wise DG and cross-entropy-based adversarial DG.
Author Tiss, A.
Eslahi, S. Vafay
Chemli, Y.
Liu, X.
Johson, K. A.
Marin, T.
Fakhri, G. El
Ouyang, J.
Author_xml – sequence: 1
  givenname: X.
  surname: Liu
  fullname: Liu, X.
  organization: Yale University, Radiology and Biomedical Imaging,New Haven,Connecticut,United States of America
– sequence: 2
  givenname: T.
  surname: Marin
  fullname: Marin, T.
  organization: Yale University, Radiology and Biomedical Imaging,New Haven,Connecticut,United States of America
– sequence: 3
  givenname: S. Vafay
  surname: Eslahi
  fullname: Eslahi, S. Vafay
  organization: Massachusetts General Hospital and Harvard Medical School, Radiology,Boston,Massachusetts,United States of America
– sequence: 4
  givenname: A.
  surname: Tiss
  fullname: Tiss, A.
  organization: Massachusetts General Hospital and Harvard Medical School, Radiology,Boston,Massachusetts,United States of America
– sequence: 5
  givenname: Y.
  surname: Chemli
  fullname: Chemli, Y.
  organization: Yale University, Radiology and Biomedical Imaging,New Haven,Connecticut,United States of America
– sequence: 6
  givenname: K. A.
  surname: Johson
  fullname: Johson, K. A.
  organization: Massachusetts General Hospital and Harvard Medical School, Radiology,Boston,Massachusetts,United States of America
– sequence: 7
  givenname: G. El
  surname: Fakhri
  fullname: Fakhri, G. El
  organization: Yale University, Radiology and Biomedical Imaging,New Haven,Connecticut,United States of America
– sequence: 8
  givenname: J.
  surname: Ouyang
  fullname: Ouyang, J.
  organization: Yale University, Radiology and Biomedical Imaging,New Haven,Connecticut,United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39445307$$D View this record in MEDLINE/PubMed
BookMark eNo9kE1PAjEYhKvByIf8A2P25mnh7bbdtkcCiCSIxsUzae27WgJdsrtA9NdLRDxNMvNkkpk2aYQiICH3FHqUgu7Ps6z_NB32XxfZSEgKqpdAwnsUUpFSARekq6VWTABTiorkkrQSIWUMKtEN0jo2iFiqlDVJu6pWAAkwzq9Jk2nOBQPZIvNsZ1f4XsfmYEqMXsaLaISh8JUPH9HB15_RsAh1aara7zEauD2WlSm9WUejYmN8iCYYsDRr_21qX4QbcpWbdYXdP-2Qt4fxYvgYz54n0-FgFnuqAWIhEaTBFFFax52WLM8tp46ByZ0VeSIddTYXUjDKc60EtWg1Hm2tfgd3yN2pd7uzG3TLbek3pvxanocdgdsT4BHxPz7_xn4ACdpiCg
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
NPM
DOI 10.1109/NSS/MIC/RTSD57108.2024.10656150
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISBN 9798350388152
EISSN 2577-0829
EndPage 1
ExternalDocumentID 39445307
10656150
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P01 AG036694
– fundername: NIBIB NIH HHS
  grantid: P41 EB022544
– fundername: NCI NIH HHS
  grantid: R01 CA275188
– fundername: NIBIB NIH HHS
  grantid: T32 EB013180
– fundername: NIBIB NIH HHS
  grantid: R21 EB034911
– fundername: NIA NIH HHS
  grantid: R01 AG076153
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
-~X
29I
29N
6IM
ACGFS
AI.
IPLJI
M43
NPM
RNS
VH1
ID FETCH-LOGICAL-i1900-57e07ae6ee7bd4d973ffb41d30afdb5f27d1dbf575314f9851beb9e27d9897983
IEDL.DBID RIE
ISSN 1095-7863
IngestDate Mon Jul 21 06:05:37 EDT 2025
Wed Aug 27 02:30:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1900-57e07ae6ee7bd4d973ffb41d30afdb5f27d1dbf575314f9851beb9e27d9897983
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11497478
PMID 39445307
PageCount 1
ParticipantIDs pubmed_primary_39445307
ieee_primary_10656150
PublicationCentury 2000
PublicationDate 2024 Oct-Nov
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024 Oct-Nov
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE Nuclear Science Symposium conference record (1997)
PublicationTitleAbbrev NSS/MIC/RTSD
PublicationTitleAlternate IEEE Nucl Sci Symp Conf Rec (1997)
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020344
ssj0052917
Score 2.3394754
Snippet Recent advances in deep learning (DL) have greatly improved the performance of positron emission tomography (PET) denoising performance. However, DL model...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Feature extraction
Microwave integrated circuits
Noise
Noise reduction
Semiconductor detectors
Three-dimensional displays
Training
Title Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization
URI https://ieeexplore.ieee.org/document/10656150
https://www.ncbi.nlm.nih.gov/pubmed/39445307
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB6qUPHUl23tQ3Io9BRNzGPdc1WkYJCq4E12s7MgpbH4oNBf39lNYkEo9BaySdjsbna-mcz3DcBTl0wwcvJUY0nwLYw96QquTc5Ul3moySuy5XzGSTyah6-LaFGQ1S0XBhFt8hm2zaH9l6_W6d6EyugLJ_RhPfQKeW45WevgXRntuho8FyKanWQ67dCLdN5m035EZtSkcXXDdvmIOtQMJTQKvLKuyhGutPZleAZJ2bM8reS9vd_Jdvp9JNr4766fQ-OXyudMDkbqAk4wu4RTm_eZbq8goY3DRGJc8SU2dOVg5vQxW69MBMExMVrHyFdtxNbsio6t3rwVZs06_fWHWGVOIVtdsDkbMB8OZi8jtyix4K4ICXhuxNBjAmNEJlWoOAu0lqGvAk9oJSPdZcpXUhOmC_xQc4JnEiVHOs17nPFecA3VbJ3hLTgxtcUR10oRpgmY6GlN6I9p35RHwtRrQsMMy_IzV9FYliPShJt83A8t5cTc_XHHPdTNXOYpdQ9Q3W32-EjQYCdbUEkm45ZdGD9wpLWk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5Esfbkq2p95iB4Spvmtd2zbanaBrEt9FZ2u7NQxFT6QPDXO7tJKhQEbyGbhM3uZuebyXzfANz7ZIKRk6caS4JvYexJV3BtcqZ85qEmr8iW8-kncXcUPo-jcU5Wt1wYRLTJZ1gzh_ZfvppP1yZURl84oQ_roe-R4Y_8jK618a-Mel0JHnIZzXoyGNTpVepvw0ErIkNqErn8sFY8pAwlQwqNAq-orLKFLK2F6RxCUvQtSyx5r61Xsjb93pJt_Hfnj6DyS-ZzXjdm6hh2MD2BfZv5OV2eQkJbh4nFuOJLLOjK9tBpYTqfmRiCY6K0jhGwWoil2RcdW795KcyqdVrzDzFLnVy4OudzVmDUaQ8fu25eZMGdERbw3IihxwTGiEyqUHEWaC3Dhgo8oZWMtM9UQ0lNqC5ohJoTQJMoOdJp3uSMN4Mz2E3nKV6AE1NbHHGtFKGagImm1oT_mG6YAkk49apQMcMy-cx0NCbFiFThPBv3TUsxMZd_3HEHB91hvzfpPSUvV1A285ol2F3D7mqxxhsCCit5a5fHD9DFt-I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+conference+record+-+Nuclear+Science+Symposium+%26+Medical+Imaging+Conference.&rft.atitle=Subject-aware+PET+Denoising+with+Contrastive+Adversarial+Domain+Generalization&rft.au=Liu%2C+X.&rft.au=Marin%2C+T.&rft.au=Eslahi%2C+S.+Vafay&rft.au=Tiss%2C+A.&rft.date=2024-10-01&rft.pub=IEEE&rft.eissn=2577-0829&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FNSS%2FMIC%2FRTSD57108.2024.10656150&rft_id=info%3Apmid%2F39445307&rft.externalDocID=10656150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-7863&client=summon