Tweet credibility analysis evaluation by improving sentiment dictionary

To detect false information or rumors spread on Twitter on and after the Great East Japan Earthquake, a tweet credibility assessing method was proposed, based on the topic and opinion classification. The credibility is assessed by calculating the ratio of the same opinions to all opinions about a to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation pp. 2354 - 2361
Main Authors Kawabe, Takashi, Namihira, Yoshimi, Suzuki, Kouta, Nara, Munehiro, Sakurai, Yoshitaka, Tsuruta, Setsuo, Knauf, Rainer
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2015
Subjects
Online AccessGet full text
ISSN1089-778X
DOI10.1109/CEC.2015.7257176

Cover

Abstract To detect false information or rumors spread on Twitter on and after the Great East Japan Earthquake, a tweet credibility assessing method was proposed, based on the topic and opinion classification. The credibility is assessed by calculating the ratio of the same opinions to all opinions about a topic identified by topic models generated using Latent Dirichlet Allocation. To identify an opinion (positive or negative) about a tweet, sentiment analysis is performed using a semantic orientation dictionary. However, it is a kind of imbalanced data analysis to identify usually very few false tweets and the accuracy is a problem. The accuracy of the originally proposed method was susceptible since the sentiment opinion of most tweets was identified negative by the baseline (namely Takamura's) semantic orientation dictionary. To cope with this problem, a method for extracting sentiment orientations of words and phrases is also proposed to improve the evaluation for analyzing the credibility of tweet information. This method 1) evolutionally learns from a large amount of social data on Twitter, 2) focuses on adjective predicates, and 3) considers co-occurrences with negation expressions or multiple adjectives, between subjects and predicates, etc. The effects are proven by experiments using a large number of real tweets, in which we could detect rumor tweet much more accurately. In opposition to the baseline semantic dictionary, our method leads to succeed in imbalanced data analysis.
AbstractList To detect false information or rumors spread on Twitter on and after the Great East Japan Earthquake, a tweet credibility assessing method was proposed, based on the topic and opinion classification. The credibility is assessed by calculating the ratio of the same opinions to all opinions about a topic identified by topic models generated using Latent Dirichlet Allocation. To identify an opinion (positive or negative) about a tweet, sentiment analysis is performed using a semantic orientation dictionary. However, it is a kind of imbalanced data analysis to identify usually very few false tweets and the accuracy is a problem. The accuracy of the originally proposed method was susceptible since the sentiment opinion of most tweets was identified negative by the baseline (namely Takamura's) semantic orientation dictionary. To cope with this problem, a method for extracting sentiment orientations of words and phrases is also proposed to improve the evaluation for analyzing the credibility of tweet information. This method 1) evolutionally learns from a large amount of social data on Twitter, 2) focuses on adjective predicates, and 3) considers co-occurrences with negation expressions or multiple adjectives, between subjects and predicates, etc. The effects are proven by experiments using a large number of real tweets, in which we could detect rumor tweet much more accurately. In opposition to the baseline semantic dictionary, our method leads to succeed in imbalanced data analysis.
Author Sakurai, Yoshitaka
Kawabe, Takashi
Nara, Munehiro
Knauf, Rainer
Namihira, Yoshimi
Tsuruta, Setsuo
Suzuki, Kouta
Author_xml – sequence: 1
  givenname: Takashi
  surname: Kawabe
  fullname: Kawabe, Takashi
  organization: Sch. of Inf. Environ., Tokyo Denki Univ., Inzai, Japan
– sequence: 2
  givenname: Yoshimi
  surname: Namihira
  fullname: Namihira, Yoshimi
  organization: Sch. of Inf. Environ., Tokyo Denki Univ., Inzai, Japan
– sequence: 3
  givenname: Kouta
  surname: Suzuki
  fullname: Suzuki, Kouta
  organization: Sch. of Inf. Environ., Tokyo Denki Univ., Inzai, Japan
– sequence: 4
  givenname: Munehiro
  surname: Nara
  fullname: Nara, Munehiro
  organization: Sch. of Inf. Environ., Tokyo Denki Univ., Inzai, Japan
– sequence: 5
  givenname: Yoshitaka
  surname: Sakurai
  fullname: Sakurai, Yoshitaka
  organization: Sch. of Interdiscipl. Math. Sci., Meiji Univ., Nakano, Japan
– sequence: 6
  givenname: Setsuo
  surname: Tsuruta
  fullname: Tsuruta, Setsuo
  organization: Sch. of Inf. Environ., Tokyo Denki Univ., Inzai, Japan
– sequence: 7
  givenname: Rainer
  surname: Knauf
  fullname: Knauf, Rainer
  organization: Fac. of Comput. Sci. & Autom., Ilmenau Univ. of Technol., Ilmenau, Germany
BookMark eNotj09LxDAUxCOs4Hb1LnjJF2h9aZq-vKOUdRUWvKzgbUnaRCL9szR1pd_einuZOQz8ZiZhq37oHWP3AjIhgB6rbZXlIFSGuUKB5RVLRIFEWFCOK7YWoClF1B83LInxC0AUStCa7Q4_zk28Hl0TbGjDNHPTm3aOIXJ3Nu23mcLQczvz0J3G4Rz6Tx5dP4VuEd6E-i8243zLrr1po7u7-Ia9P28P1Uu6f9u9Vk_7NAhNU9pYVAqUt7gMI--VdLmxKAtvlaYSPEBRUiO9BvJaeiLbgNJWotO1FkZu2MM_NzjnjqcxdEv58XJa_gIXRU4p
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2015.7257176
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 1479974927
9781479974924
EndPage 2361
ExternalDocumentID 7257176
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i189t-db75505fb77499ff53e2ab734fb58960f00469d3f809f83f99bd058b37e8c81a3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Wed Aug 27 02:44:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i189t-db75505fb77499ff53e2ab734fb58960f00469d3f809f83f99bd058b37e8c81a3
PageCount 8
ParticipantIDs ieee_primary_7257176
PublicationCentury 2000
PublicationDate 20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 20150501
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev CEC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
Score 2.0180364
Snippet To detect false information or rumors spread on Twitter on and after the Great East Japan Earthquake, a tweet credibility assessing method was proposed, based...
SourceID ieee
SourceType Publisher
StartPage 2354
SubjectTerms Accuracy
Dictionaries
evolutional learn by tweet
imbalanced data analysis
semantic orientation dictionary
Semantics
Sentiment analysis
Speech
topic classification
tweet credibility
Twitter
Web pages
Title Tweet credibility analysis evaluation by improving sentiment dictionary
URI https://ieeexplore.ieee.org/document/7257176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NawIxEB3UU3uxVUu_yaHH7rrrJpvkLFopWHpQ8CbJZgJS0CIrxf76JvuhbemhtxAIhEzCzGTeewPwQL2kSMp0wMzABNQFRoHASAU0Ra4sj5RBnyhOX9LJnD4v2KIBjwcuDCIW4DMM_bCo5ZtNtvNfZX3u7lfM0yY03TUruVqHioGXSSnB9NJFjGJRlyQj2R-Ohh7DxcJq_Y9GKoUfGbdhWu-ghI-8hbtch9nnL3HG_27xDHpHxh55Pfiic2jgugPtumUDqV5wB06_6Q924Wn2gZgTLxpagmT3RFUiJeQoA070nqzqvwfiyUpFRwBiVgUnQm33PZiPR7PhJKg6KwSrWMg8MJr7zMRqF_xJaS1LcKA0T6jVTLicxhZps0msiKQViZVSm4gJnXAUmYhVcgGt9WaNl0B0RLPUWmpSHtNYuYCDpplhzsxSYhzbK-j6U1q-l-IZy-qArv-evoETb6kSUXgLrXy7wzvn9XN9X5j7C76OrG4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHtQLChi_7cGju-yy7bY9ExAViAdIuJF22ybEBAhZYvDX2-4HqPHgbbOHTdPZZt503nsD8ICdpUhMpEdUW3nYAiOP6UB4ONZUGBoIpV2hOBzF_Ql-mZJpBR53WhitdUY-0757zHr5apls3FVZi9r_K6TxARzavI9Jrtba9QycUUpOp-cWM7Jp2ZQMeKvT7TgWF_GLL_wYpZJlkl4NhuUacgLJu79JpZ98_rJn_O8iT6G51-yht102OoOKXtShVg5tQMUZrsPJNwfCBjyNP7ROkbMNzWmyWyQKmxK0NwJHcovm5e0DcnKlbCYAUvNMFSHW2yZMet1xp-8VsxW8ech46ilJXW1ipIV_nBtDIt0WkkbYSMJsVWOywllFhgXcsMhwLlVAmIyoZgkLRXQO1cVyoS8AyQAnsTFYxTTEobCQA8eJIjbQnOswNJfQcLs0W-X2GbNig67-fn0PR_3xcDAbPI9er-HYRS3nF95ANV1v9K3FAKm8y0L_BfVTr7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+transactions+on+evolutionary+computation&rft.atitle=Tweet+credibility+analysis+evaluation+by+improving+sentiment+dictionary&rft.au=Kawabe%2C+Takashi&rft.au=Namihira%2C+Yoshimi&rft.au=Suzuki%2C+Kouta&rft.au=Nara%2C+Munehiro&rft.date=2015-05-01&rft.pub=IEEE&rft.issn=1089-778X&rft.spage=2354&rft.epage=2361&rft_id=info:doi/10.1109%2FCEC.2015.7257176&rft.externalDocID=7257176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon