Reliability Estimation and Enhancement via Spatial Smoothing in Sparse fMRI Modeling
Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision. Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the...
Saved in:
Published in | Practical Applications of Sparse Modeling |
---|---|
Format | Book Chapter |
Language | English |
Published |
United States
MIT Press
2014
The MIT Press |
Series | Neural Information Processing series |
Subjects | |
Online Access | Get full text |
ISBN | 0262027720 9780262027724 |
DOI | 10.7551/mitpress/9333.003.0008 |
Cover
Abstract | Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision.
Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision.
Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models.
Contributors
A. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing |
---|---|
AbstractList | Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision.
Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision.
Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models.
Contributors
A. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing This chapter contains sections titled: 1 Methods, 2 Results, 3 Discussion, 4 Summary, Note, References |
BookMark | eNo1kNtOAjEQQGu8REA-wBfTHwB62W7bR0NQSSAmgM9Nd3cWqksXt9XEv7cbNJlm0s6cSecM0ZVvPSD0QMlUCkFnRxdPHYQw05zzKSH9IeoCjbVUhOWMM5HiEg37C2FSMnKDBppkklOh5S0ah_CeEJoJLpQcoN0GGmcL17j4gxchuqONrvXY-gov_MH6Eo7gI_52Fm9PqWYbvD22bTw4v8fO949dAFyvN0u8bqs0ze_v0HVtmwDjvzxCb0-L3fxlsnp9Xs4fVxNHlYwTZXnKTCpaFTXkhcwVoyXTNac1iEwJK4gFTVhaTle8AAYgqwJomYm0QsVHiJ_nnrr28wtCNFC07UeZPtzZpjzYU4QuGKHznBBpKDGUq0TNzlSSafr-0Fd6veZfr-n1mqTX9HoTcX8mHAD8IbnOOSMZ_wWqU3cH |
ContentType | Book Chapter |
Contributor | Hein, Matthias Kim, Seyoung Chen, Xi Cecchi, Guillermo A Heller, Katherine Slawski, Martin Carroll, Melissa K Apkarian, A. Vania Kyrillidis, Anastasios Odobez, Jean-Marc Churchill, Nathan W Rish, Irina Emonet, Rémi Baliki, Marwan Jafarpour, Sina Malloy, Matthew L Cevher, Volkan Mohamed, Shakir Lozano, Aurelie Niculescu-Mizil, Alexandru Varadarajan, Jagannadan Kolar, Mladen Nowak, Robert D Rasmussen, Peter M Rosset, Saharon Xing, Eric P Strother, Stephen C Meyer, Pablo Ghahramani, Zoubin Hansen, Lars Kai Garg, Rahul |
Contributor_xml | – sequence: 1 givenname: Irina surname: Rish fullname: Rish, Irina – sequence: 2 givenname: Guillermo A surname: Cecchi fullname: Cecchi, Guillermo A – sequence: 3 givenname: Aurelie surname: Lozano fullname: Lozano, Aurelie – sequence: 4 givenname: Alexandru surname: Niculescu-Mizil fullname: Niculescu-Mizil, Alexandru – sequence: 5 givenname: Irina surname: Rish fullname: Rish, Irina – sequence: 6 givenname: Guillermo A surname: Cecchi fullname: Cecchi, Guillermo A – sequence: 7 givenname: Aurelie surname: Lozano fullname: Lozano, Aurelie – sequence: 8 givenname: Alexandru surname: Niculescu-Mizil fullname: Niculescu-Mizil, Alexandru – sequence: 9 givenname: Pablo surname: Meyer fullname: Meyer, Pablo – sequence: 10 givenname: Saharon surname: Rosset fullname: Rosset, Saharon – sequence: 11 givenname: Eric P surname: Xing fullname: Xing, Eric P – sequence: 12 givenname: Mladen surname: Kolar fullname: Kolar, Mladen – sequence: 13 givenname: Seyoung surname: Kim fullname: Kim, Seyoung – sequence: 14 givenname: Xi surname: Chen fullname: Chen, Xi – sequence: 15 givenname: Martin surname: Slawski fullname: Slawski, Martin – sequence: 16 givenname: Matthias surname: Hein fullname: Hein, Matthias organization: Universität des Saarlandes – sequence: 17 givenname: Stephen C surname: Strother fullname: Strother, Stephen C organization: Baycrest – sequence: 18 givenname: Peter M surname: Rasmussen fullname: Rasmussen, Peter M – sequence: 19 givenname: Nathan W surname: Churchill fullname: Churchill, Nathan W – sequence: 20 givenname: Lars Kai surname: Hansen fullname: Hansen, Lars Kai organization: Technical University of Denmark – sequence: 21 givenname: Melissa K surname: Carroll fullname: Carroll, Melissa K – sequence: 22 givenname: Rahul surname: Garg fullname: Garg, Rahul – sequence: 23 givenname: Marwan surname: Baliki fullname: Baliki, Marwan – sequence: 24 givenname: A. Vania surname: Apkarian fullname: Apkarian, A. Vania organization: Northwestern University – sequence: 25 givenname: Matthew L surname: Malloy fullname: Malloy, Matthew L – sequence: 26 givenname: Robert D surname: Nowak fullname: Nowak, Robert D – sequence: 27 givenname: Volkan surname: Cevher fullname: Cevher, Volkan – sequence: 28 givenname: Sina surname: Jafarpour fullname: Jafarpour, Sina – sequence: 29 givenname: Anastasios surname: Kyrillidis fullname: Kyrillidis, Anastasios – sequence: 30 givenname: Shakir surname: Mohamed fullname: Mohamed, Shakir – sequence: 31 givenname: Katherine surname: Heller fullname: Heller, Katherine – sequence: 32 givenname: Zoubin surname: Ghahramani fullname: Ghahramani, Zoubin organization: Cambridge University – sequence: 33 givenname: Jagannadan surname: Varadarajan fullname: Varadarajan, Jagannadan – sequence: 34 givenname: Rémi surname: Emonet fullname: Emonet, Rémi – sequence: 35 givenname: Jean-Marc surname: Odobez fullname: Odobez, Jean-Marc |
Copyright | 2014 Massachusetts Institute of Technology |
Copyright_xml | – notice: 2014 Massachusetts Institute of Technology |
DBID | FFUUA |
DEWEY | 003/.74 |
DOI | 10.7551/mitpress/9333.003.0008 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science Mathematics |
EISBN | 9780262325325 0262325322 |
Editor | Cecchi, Guillermo A Rish, Irina Lozano, Aurelie Niculescu-Mizil, Alexandru |
Editor_xml | – sequence: 1 givenname: Irina surname: Rish fullname: Rish, Irina – sequence: 2 givenname: Guillermo A surname: Cecchi fullname: Cecchi, Guillermo A – sequence: 3 givenname: Aurelie surname: Lozano fullname: Lozano, Aurelie – sequence: 4 givenname: Alexandru surname: Niculescu-Mizil fullname: Niculescu-Mizil, Alexandru |
ExternalDocumentID | EBC5966007_10_138 10_7551_mitpress_9333_003_0008 6963204 |
GroupedDBID | -D2 38. 6IK AABBV ABFEK AEFEZ AGMVS ALMA_UNASSIGNED_HOLDINGS AZFZN BBABE BEFXN BFFAM BGNUA BKEBE BPEOZ D2 EBRZX ECNEQ MIJRL OCL AAOBU AEGYG ISLSO MCG MICIX ABAZT AHWGJ FFUUA |
ID | FETCH-LOGICAL-i187t-8a31872781dbfe6b76821c29f31fe5485a50ae9029789d3be2ee7dbe1c45001d3 |
IEDL.DBID | -D2 |
ISBN | 0262027720 9780262027724 |
IngestDate | Mon Jun 16 02:47:28 EDT 2025 Tue Jun 18 19:33:11 EDT 2024 Tue Jan 05 21:15:43 EST 2021 |
IsPeerReviewed | false |
IsScholarly | false |
LCCallNum | TA342$b.R574 2014 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i187t-8a31872781dbfe6b76821c29f31fe5485a50ae9029789d3be2ee7dbe1c45001d3 |
OCLC | 904731597 |
PQID | EBC5966007_10_138 |
ParticipantIDs | proquest_ebookcentralchapters_5966007_10_138 mit_books_10_7551_mitpress_9333_003_0008 ieee_books_6963204 |
ProviderPackageCode | BPEOZ BGNUA ECNEQ 6IK EBRZX OCL BKEBE -D2 BEFXN BFFAM MIJRL |
PublicationCentury | 2000 |
PublicationDate | 2014 20140912 |
PublicationDateYYYYMMDD | 2014-01-01 2014-09-12 |
PublicationDate_xml | – year: 2014 text: 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationSeriesTitle | Neural Information Processing series |
PublicationTitle | Practical Applications of Sparse Modeling |
PublicationYear | 2014 |
Publisher | MIT Press The MIT Press |
Publisher_xml | – name: MIT Press – name: The MIT Press |
SSID | ssj0001453587 |
Score | 1.4433522 |
Snippet | This chapter contains sections titled: 1 Methods, 2 Results, 3 Discussion, 4 Summary, Note, References Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and... |
SourceID | proquest mit ieee |
SourceType | Publisher |
SubjectTerms | Computer Science Machine learning Machine Learning & Neural Networks Neuroscience |
Title | Reliability Estimation and Enhancement via Spatial Smoothing in Sparse fMRI Modeling |
URI | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6963204 http://dx.doi.org/10.7551/mitpress/9333.003.0008 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5966007&ppg=138&c=UERG |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6KXsRDrQ-sL_Yg4sG0zWPzOHiyLVWoB22ht7CbTDBoE0hSQX-9M5sED_XooZAmISEzw-w3O4-PsWvhOTSJSxquH3gYoPiBIROghGOMcF0KAUAb-vNnd7Z0nlZi1WEt3RERnOjaMxjQoU7l4_9hI8axLqss9TTBAj5yGd9XxQZuZNHwZ7hoTxaNB93FsMYmizfG1u-eiyNs4Xt1o7CHWGG4TitdbzrEuJ5GndKPmCY10wouN3h9y0nrlWfaZXnbv1MXnLwPNpUaRN_b4xz_6aMO2D71P3BqTECZ91gHskPWbdAqb3xBecQWVM1cT_n-4hP0FHUTJJdZzCfZG1kT7Tzyz1RyIj5GQ-ev6xwtA1dLnmZ0siiBJ_OXR06UbNQYf8yW08niYWY0HA1GavpeZfgSnQJiIIS9KgFXYfRimZEVJLaZAEZDQoqRhIAosvwgthVYAF6swIwcgQqJ7RO2k-UZnDJuIvgBBBDoQyInVq4SeI_tRm4yki4-o896JL6Qoo8ybITSZ7eoo-YcBjSk1bDVakhapemnlGL3--yuVWSoM9FN-WtUy7MMBU0qHXmhTvL5Z3-97pztIWJy6j2YC7ZDirpEVFKpK21qP1yk4oY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8NADLaqMoAYSnmI8ryBgaFpm8flMUOrFpoO0ErdokviiAo1lZoUCX49dpKCBAwMkaJLdDnZ59g-258BbqRjMRKX0mzXc8hBcT1NJcgBx5jMdSUlIh_o-xN7OLMe5nJeg_ZXLQwiFsln2OHbIpYfr6INH5V1bdotBoN_7jB8JSPla_fG94mKJU3pOmUZsEOWQHe5yIts0i557Qxkyhf3kSz6qJAyoee_fsGFXhk0wN-uqEwnee1s8rATffwAa_zvkg9gn2sXBBcVEL2aUMP0EBqVpSkqOc6OYMqZyCVC97vok5SXBYxCpbHopy-8E3he8bZQgpsW0yYVz8sVcZU0nVikPLjOUCT-00hwOzUuaj-G2aA_vRtqVX8FbaG7Tq65igSa7BcyWcME7ZA8D0OPDC8x9QTJk5FK9hR63N7K9WIzRAPRiUPUI0sSuWPzBOrpKsVTEDoZLkjKn-Q_suLQDiW9Y9qRnfSUTXO0oMm0CdhzyIKKKC24JQ5UY-SMMM-CLc8C5hkjl3J43G1Be8umoIgiV6mrUUnPLJCMMtpzgiJA55799blr2B1O_XEwHk0ez2GPLB-rPEu5gHq-3uAlWRd5eFVsqk-chMsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Practical+Applications+of+Sparse+Modeling&rft.atitle=Reliability+Estimation+and+Enhancement+via+Spatial+Smoothing+in+Sparse+fMRI+Modeling&rft.series=Neural+Information+Processing+series&rft.date=2014-01-01&rft.pub=MIT+Press&rft.isbn=9780262325325&rft_id=info:doi/10.7551%2Fmitpress%2F9333.003.0008&rft.externalDocID=6963204 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5966007-l.jpg |