Reliability Estimation and Enhancement via Spatial Smoothing in Sparse fMRI Modeling

Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision. Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the...

Full description

Saved in:
Bibliographic Details
Published inPractical Applications of Sparse Modeling
Format Book Chapter
LanguageEnglish
Published United States MIT Press 2014
The MIT Press
SeriesNeural Information Processing series
Subjects
Online AccessGet full text
ISBN0262027720
9780262027724
DOI10.7551/mitpress/9333.003.0008

Cover

Abstract Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision. Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models. Contributors A. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing
AbstractList Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision. Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models. Contributors A. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing
This chapter contains sections titled: 1 Methods, 2 Results, 3 Discussion, 4 Summary, Note, References
BookMark eNo1kNtOAjEQQGu8REA-wBfTHwB62W7bR0NQSSAmgM9Nd3cWqksXt9XEv7cbNJlm0s6cSecM0ZVvPSD0QMlUCkFnRxdPHYQw05zzKSH9IeoCjbVUhOWMM5HiEg37C2FSMnKDBppkklOh5S0ah_CeEJoJLpQcoN0GGmcL17j4gxchuqONrvXY-gov_MH6Eo7gI_52Fm9PqWYbvD22bTw4v8fO949dAFyvN0u8bqs0ze_v0HVtmwDjvzxCb0-L3fxlsnp9Xs4fVxNHlYwTZXnKTCpaFTXkhcwVoyXTNac1iEwJK4gFTVhaTle8AAYgqwJomYm0QsVHiJ_nnrr28wtCNFC07UeZPtzZpjzYU4QuGKHznBBpKDGUq0TNzlSSafr-0Fd6veZfr-n1mqTX9HoTcX8mHAD8IbnOOSMZ_wWqU3cH
ContentType Book Chapter
Contributor Hein, Matthias
Kim, Seyoung
Chen, Xi
Cecchi, Guillermo A
Heller, Katherine
Slawski, Martin
Carroll, Melissa K
Apkarian, A. Vania
Kyrillidis, Anastasios
Odobez, Jean-Marc
Churchill, Nathan W
Rish, Irina
Emonet, Rémi
Baliki, Marwan
Jafarpour, Sina
Malloy, Matthew L
Cevher, Volkan
Mohamed, Shakir
Lozano, Aurelie
Niculescu-Mizil, Alexandru
Varadarajan, Jagannadan
Kolar, Mladen
Nowak, Robert D
Rasmussen, Peter M
Rosset, Saharon
Xing, Eric P
Strother, Stephen C
Meyer, Pablo
Ghahramani, Zoubin
Hansen, Lars Kai
Garg, Rahul
Contributor_xml – sequence: 1
  givenname: Irina
  surname: Rish
  fullname: Rish, Irina
– sequence: 2
  givenname: Guillermo A
  surname: Cecchi
  fullname: Cecchi, Guillermo A
– sequence: 3
  givenname: Aurelie
  surname: Lozano
  fullname: Lozano, Aurelie
– sequence: 4
  givenname: Alexandru
  surname: Niculescu-Mizil
  fullname: Niculescu-Mizil, Alexandru
– sequence: 5
  givenname: Irina
  surname: Rish
  fullname: Rish, Irina
– sequence: 6
  givenname: Guillermo A
  surname: Cecchi
  fullname: Cecchi, Guillermo A
– sequence: 7
  givenname: Aurelie
  surname: Lozano
  fullname: Lozano, Aurelie
– sequence: 8
  givenname: Alexandru
  surname: Niculescu-Mizil
  fullname: Niculescu-Mizil, Alexandru
– sequence: 9
  givenname: Pablo
  surname: Meyer
  fullname: Meyer, Pablo
– sequence: 10
  givenname: Saharon
  surname: Rosset
  fullname: Rosset, Saharon
– sequence: 11
  givenname: Eric P
  surname: Xing
  fullname: Xing, Eric P
– sequence: 12
  givenname: Mladen
  surname: Kolar
  fullname: Kolar, Mladen
– sequence: 13
  givenname: Seyoung
  surname: Kim
  fullname: Kim, Seyoung
– sequence: 14
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
– sequence: 15
  givenname: Martin
  surname: Slawski
  fullname: Slawski, Martin
– sequence: 16
  givenname: Matthias
  surname: Hein
  fullname: Hein, Matthias
  organization: Universität des Saarlandes
– sequence: 17
  givenname: Stephen C
  surname: Strother
  fullname: Strother, Stephen C
  organization: Baycrest
– sequence: 18
  givenname: Peter M
  surname: Rasmussen
  fullname: Rasmussen, Peter M
– sequence: 19
  givenname: Nathan W
  surname: Churchill
  fullname: Churchill, Nathan W
– sequence: 20
  givenname: Lars Kai
  surname: Hansen
  fullname: Hansen, Lars Kai
  organization: Technical University of Denmark
– sequence: 21
  givenname: Melissa K
  surname: Carroll
  fullname: Carroll, Melissa K
– sequence: 22
  givenname: Rahul
  surname: Garg
  fullname: Garg, Rahul
– sequence: 23
  givenname: Marwan
  surname: Baliki
  fullname: Baliki, Marwan
– sequence: 24
  givenname: A. Vania
  surname: Apkarian
  fullname: Apkarian, A. Vania
  organization: Northwestern University
– sequence: 25
  givenname: Matthew L
  surname: Malloy
  fullname: Malloy, Matthew L
– sequence: 26
  givenname: Robert D
  surname: Nowak
  fullname: Nowak, Robert D
– sequence: 27
  givenname: Volkan
  surname: Cevher
  fullname: Cevher, Volkan
– sequence: 28
  givenname: Sina
  surname: Jafarpour
  fullname: Jafarpour, Sina
– sequence: 29
  givenname: Anastasios
  surname: Kyrillidis
  fullname: Kyrillidis, Anastasios
– sequence: 30
  givenname: Shakir
  surname: Mohamed
  fullname: Mohamed, Shakir
– sequence: 31
  givenname: Katherine
  surname: Heller
  fullname: Heller, Katherine
– sequence: 32
  givenname: Zoubin
  surname: Ghahramani
  fullname: Ghahramani, Zoubin
  organization: Cambridge University
– sequence: 33
  givenname: Jagannadan
  surname: Varadarajan
  fullname: Varadarajan, Jagannadan
– sequence: 34
  givenname: Rémi
  surname: Emonet
  fullname: Emonet, Rémi
– sequence: 35
  givenname: Jean-Marc
  surname: Odobez
  fullname: Odobez, Jean-Marc
Copyright 2014 Massachusetts Institute of Technology
Copyright_xml – notice: 2014 Massachusetts Institute of Technology
DBID FFUUA
DEWEY 003/.74
DOI 10.7551/mitpress/9333.003.0008
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
Mathematics
EISBN 9780262325325
0262325322
Editor Cecchi, Guillermo A
Rish, Irina
Lozano, Aurelie
Niculescu-Mizil, Alexandru
Editor_xml – sequence: 1
  givenname: Irina
  surname: Rish
  fullname: Rish, Irina
– sequence: 2
  givenname: Guillermo A
  surname: Cecchi
  fullname: Cecchi, Guillermo A
– sequence: 3
  givenname: Aurelie
  surname: Lozano
  fullname: Lozano, Aurelie
– sequence: 4
  givenname: Alexandru
  surname: Niculescu-Mizil
  fullname: Niculescu-Mizil, Alexandru
ExternalDocumentID EBC5966007_10_138
10_7551_mitpress_9333_003_0008
6963204
GroupedDBID -D2
38.
6IK
AABBV
ABFEK
AEFEZ
AGMVS
ALMA_UNASSIGNED_HOLDINGS
AZFZN
BBABE
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
D2
EBRZX
ECNEQ
MIJRL
OCL
AAOBU
AEGYG
ISLSO
MCG
MICIX
ABAZT
AHWGJ
FFUUA
ID FETCH-LOGICAL-i187t-8a31872781dbfe6b76821c29f31fe5485a50ae9029789d3be2ee7dbe1c45001d3
IEDL.DBID -D2
ISBN 0262027720
9780262027724
IngestDate Mon Jun 16 02:47:28 EDT 2025
Tue Jun 18 19:33:11 EDT 2024
Tue Jan 05 21:15:43 EST 2021
IsPeerReviewed false
IsScholarly false
LCCallNum TA342$b.R574 2014
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i187t-8a31872781dbfe6b76821c29f31fe5485a50ae9029789d3be2ee7dbe1c45001d3
OCLC 904731597
PQID EBC5966007_10_138
ParticipantIDs proquest_ebookcentralchapters_5966007_10_138
mit_books_10_7551_mitpress_9333_003_0008
ieee_books_6963204
ProviderPackageCode BPEOZ
BGNUA
ECNEQ
6IK
EBRZX
OCL
BKEBE
-D2
BEFXN
BFFAM
MIJRL
PublicationCentury 2000
PublicationDate 2014
20140912
PublicationDateYYYYMMDD 2014-01-01
2014-09-12
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSeriesTitle Neural Information Processing series
PublicationTitle Practical Applications of Sparse Modeling
PublicationYear 2014
Publisher MIT Press
The MIT Press
Publisher_xml – name: MIT Press
– name: The MIT Press
SSID ssj0001453587
Score 1.4433522
Snippet This chapter contains sections titled: 1 Methods, 2 Results, 3 Discussion, 4 Summary, Note, References
Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and...
SourceID proquest
mit
ieee
SourceType Publisher
SubjectTerms Computer Science
Machine learning
Machine Learning & Neural Networks
Neuroscience
Title Reliability Estimation and Enhancement via Spatial Smoothing in Sparse fMRI Modeling
URI http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6963204
http://dx.doi.org/10.7551/mitpress/9333.003.0008
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5966007&ppg=138&c=UERG
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6KXsRDrQ-sL_Yg4sG0zWPzOHiyLVWoB22ht7CbTDBoE0hSQX-9M5sED_XooZAmISEzw-w3O4-PsWvhOTSJSxquH3gYoPiBIROghGOMcF0KAUAb-vNnd7Z0nlZi1WEt3RERnOjaMxjQoU7l4_9hI8axLqss9TTBAj5yGd9XxQZuZNHwZ7hoTxaNB93FsMYmizfG1u-eiyNs4Xt1o7CHWGG4TitdbzrEuJ5GndKPmCY10wouN3h9y0nrlWfaZXnbv1MXnLwPNpUaRN_b4xz_6aMO2D71P3BqTECZ91gHskPWbdAqb3xBecQWVM1cT_n-4hP0FHUTJJdZzCfZG1kT7Tzyz1RyIj5GQ-ev6xwtA1dLnmZ0siiBJ_OXR06UbNQYf8yW08niYWY0HA1GavpeZfgSnQJiIIS9KgFXYfRimZEVJLaZAEZDQoqRhIAosvwgthVYAF6swIwcgQqJ7RO2k-UZnDJuIvgBBBDoQyInVq4SeI_tRm4yki4-o896JL6Qoo8ybITSZ7eoo-YcBjSk1bDVakhapemnlGL3--yuVWSoM9FN-WtUy7MMBU0qHXmhTvL5Z3-97pztIWJy6j2YC7ZDirpEVFKpK21qP1yk4oY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8NADLaqMoAYSnmI8ryBgaFpm8flMUOrFpoO0ErdokviiAo1lZoUCX49dpKCBAwMkaJLdDnZ59g-258BbqRjMRKX0mzXc8hBcT1NJcgBx5jMdSUlIh_o-xN7OLMe5nJeg_ZXLQwiFsln2OHbIpYfr6INH5V1bdotBoN_7jB8JSPla_fG94mKJU3pOmUZsEOWQHe5yIts0i557Qxkyhf3kSz6qJAyoee_fsGFXhk0wN-uqEwnee1s8rATffwAa_zvkg9gn2sXBBcVEL2aUMP0EBqVpSkqOc6OYMqZyCVC97vok5SXBYxCpbHopy-8E3he8bZQgpsW0yYVz8sVcZU0nVikPLjOUCT-00hwOzUuaj-G2aA_vRtqVX8FbaG7Tq65igSa7BcyWcME7ZA8D0OPDC8x9QTJk5FK9hR63N7K9WIzRAPRiUPUI0sSuWPzBOrpKsVTEDoZLkjKn-Q_suLQDiW9Y9qRnfSUTXO0oMm0CdhzyIKKKC24JQ5UY-SMMM-CLc8C5hkjl3J43G1Be8umoIgiV6mrUUnPLJCMMtpzgiJA55799blr2B1O_XEwHk0ez2GPLB-rPEu5gHq-3uAlWRd5eFVsqk-chMsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Practical+Applications+of+Sparse+Modeling&rft.atitle=Reliability+Estimation+and+Enhancement+via+Spatial+Smoothing+in+Sparse+fMRI+Modeling&rft.series=Neural+Information+Processing+series&rft.date=2014-01-01&rft.pub=MIT+Press&rft.isbn=9780262325325&rft_id=info:doi/10.7551%2Fmitpress%2F9333.003.0008&rft.externalDocID=6963204
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5966007-l.jpg