360-Indoor: Towards Learning Real-World Objects in 360° Indoor Equirectangular Images

While there are several widely used object detection datasets, current computer vision algorithms are still limited in conventional images. Such images narrow our vision in a restricted region. On the other hand, 360° images provide a thorough sight. In this paper, our goal is to provide a standard...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE Workshop on Applications of Computer Vision pp. 834 - 842
Main Authors Chou, Shih-Han, Sun, Cheng, Chang, Wen-Yen, Hsu, Wan-Ting, Sun, Min, Fu, Jianlong
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2020
Online AccessGet full text

Cover

Loading…
Abstract While there are several widely used object detection datasets, current computer vision algorithms are still limited in conventional images. Such images narrow our vision in a restricted region. On the other hand, 360° images provide a thorough sight. In this paper, our goal is to provide a standard dataset to facilitate the vision and machine learning communities in 360° domain. To facilitate the research, we present a real-world 360° panoramic object detection dataset, 360-Indoor, which is a new benchmark for visual object detection and class recognition in 360° indoor images. It is achieved by gathering images of complex indoor scenes containing common objects and the intensive annotated bounding field-of-view. In addition, 360-Indoor has several distinct properties: (1) the largest category number (37 labels in total). (2) the most complete annotations on average (27 bounding boxes per image). The selected 37 objects are all common in indoor scene. With around 3k images and 90k labels in total, 360-Indoor achieves the largest dataset for detection in 360° images. In the end, extensive experiments on the state-of-the-art methods for both classification and detection are provided. We will release this dataset in the near future.
AbstractList While there are several widely used object detection datasets, current computer vision algorithms are still limited in conventional images. Such images narrow our vision in a restricted region. On the other hand, 360° images provide a thorough sight. In this paper, our goal is to provide a standard dataset to facilitate the vision and machine learning communities in 360° domain. To facilitate the research, we present a real-world 360° panoramic object detection dataset, 360-Indoor, which is a new benchmark for visual object detection and class recognition in 360° indoor images. It is achieved by gathering images of complex indoor scenes containing common objects and the intensive annotated bounding field-of-view. In addition, 360-Indoor has several distinct properties: (1) the largest category number (37 labels in total). (2) the most complete annotations on average (27 bounding boxes per image). The selected 37 objects are all common in indoor scene. With around 3k images and 90k labels in total, 360-Indoor achieves the largest dataset for detection in 360° images. In the end, extensive experiments on the state-of-the-art methods for both classification and detection are provided. We will release this dataset in the near future.
Author Sun, Min
Fu, Jianlong
Sun, Cheng
Hsu, Wan-Ting
Chou, Shih-Han
Chang, Wen-Yen
Author_xml – sequence: 1
  givenname: Shih-Han
  surname: Chou
  fullname: Chou, Shih-Han
  organization: National Tsing Hua University,Hsinchu
– sequence: 2
  givenname: Cheng
  surname: Sun
  fullname: Sun, Cheng
  organization: National Tsing Hua University,Hsinchu
– sequence: 3
  givenname: Wen-Yen
  surname: Chang
  fullname: Chang, Wen-Yen
  organization: National Tsing Hua University,Hsinchu
– sequence: 4
  givenname: Wan-Ting
  surname: Hsu
  fullname: Hsu, Wan-Ting
  organization: National Tsing Hua University,Hsinchu
– sequence: 5
  givenname: Min
  surname: Sun
  fullname: Sun, Min
  organization: National Tsing Hua University,Hsinchu
– sequence: 6
  givenname: Jianlong
  surname: Fu
  fullname: Fu, Jianlong
  organization: Microsoft Research,Beijing
BookMark eNotkN9KwzAchaMouE6fQJC8QGbyS9M23o2yaaEwkLldjvxr6ehSTTbEt_IZfDIL29WB7_Cdi5OgGz94h9ATozPGqHzezstNKkQOM6BAZ5JKDhlcoYTlULBMCC6v0QSyFIjkBbtDSYx7Srlkkk_QhmeUVN4OQ3jB6-FbBRtx7VTwnW_xu1M92Q6ht3il984cI-48HpW_X3yW8OLr1IWxUb499Srg6qBaF-_RbaP66B4uOUUfy8W6fCP16rUq5zXpWJEeiVbW5JZxA04ZaBphQGjpVG6sYLwYOU-lBm0cp1YXIAVLqbRNJrRWeSH5FD2edzvn3O4zdAcVfnaXD_g_k1dTkw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WACV45572.2020.9093262
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1728165539
9781728165530
EISSN 2642-9381
EndPage 842
ExternalDocumentID 9093262
Genre orig-research
GroupedDBID 29G
29O
6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i184t-badc7d13c2eac2ff5c25b9ea7cd51383c2349b2bce30db82951409df65bba7893
IEDL.DBID RIE
IngestDate Wed Aug 27 02:40:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i184t-badc7d13c2eac2ff5c25b9ea7cd51383c2349b2bce30db82951409df65bba7893
PageCount 9
ParticipantIDs ieee_primary_9093262
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings / IEEE Workshop on Applications of Computer Vision
PublicationTitleAbbrev WACV
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039193
Score 2.3197057
Snippet While there are several widely used object detection datasets, current computer vision algorithms are still limited in conventional images. Such images narrow...
SourceID ieee
SourceType Publisher
StartPage 834
Title 360-Indoor: Towards Learning Real-World Objects in 360° Indoor Equirectangular Images
URI https://ieeexplore.ieee.org/document/9093262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKT5wKtIhdPnDEqWPHWbihqlWLVECoLb1V3oIqRIKa9MJX8Q18GbaTFoE4cIsSjRLZ8sybyXszAFxqqjnmWiDmR650E6A4VgQpxYTEvlaKWnHy-C4cToPbOZs3wNVWC6O1duQz7dlL9y9f5XJtS2XdBFu0YRzujkncKq3WxuvSxCCRWgHs46T7dNObBYxFVmtFsFdb_hih4iLIoAXGm3dXxJEXb10KT77_asv434_bA51vrR582EahfdDQ2QFo1eAS1ke3aIMZDTEaZSrPV9dw4siyBay7qz7DR4MXkSPWwHthSzMFXGbQmHx-wMoI9i1n2DyxBU6TDsPRq3FFRQdMB_1Jb4jqoQpoaZK5EgmuZKR8KolxuSRNmSRMJJpHUjHfpKuS0CARREhNsRIxMQjMpIAqDZkQPDLo5hA0szzTRwDazjmSxDwNaBpInCZxErmhnz6NGOfpMWjbZVq8VX0zFvUKnfx9-xTs2q2q-F1noFmu1vrcBPxSXLid_gKIXat1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOgJFYzf7sGjLdvdLm29GQIBBTQGkBvZrxpibA0tF3-Vv8Ff5u62YDQevDVtJ21205k30_dmALhURDHEFHeoF9jSje-EocSOlJQL5CkpiREnD0et3sS_ndFZBVxttDBKKUs-U645tP_yZSpWplTWjJBBG9rhbum4T3Gh1lr7XRJpLFJqgD0UNZ9u2lN9V2DUVhi5pe2PISo2hnRrYLh-ekEdeXFXOXfF-6_GjP99vV3Q-FbrwYdNHNoDFZXsg1oJL2H58WZ1MCUt5PQTmabLazi2dNkMlv1Vn-GjRoyOpdbAe26KMxlcJFCbfH7Awgh2DGtYXzElTp0Qw_6rdkZZA0y6nXG755RjFZyFTudyhzMpAukRgbXTxXFMBaY8UiwQkno6YRWY-BHHXCiCJA-xxmA6CZRxi3LOAo1vDkA1SRN1CKDpnSNwyGKfxL5AcRRGgR376ZGAMhYfgbpZpvlb0TljXq7Q8d-nL8B2bzwczAf90d0J2DHbVrC9TkE1X67UmQ7_OT-3u_4FrO-uvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+Workshop+on+Applications+of+Computer+Vision&rft.atitle=360-Indoor%3A+Towards+Learning+Real-World+Objects+in+360%C2%B0+Indoor+Equirectangular+Images&rft.au=Chou%2C+Shih-Han&rft.au=Sun%2C+Cheng&rft.au=Chang%2C+Wen-Yen&rft.au=Hsu%2C+Wan-Ting&rft.date=2020-03-01&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=834&rft.epage=842&rft_id=info:doi/10.1109%2FWACV45572.2020.9093262&rft.externalDocID=9093262