Crystal Structures and Proton Conductivities of a MOF and Two POM-MOF Composites Based on CuII Ions and 2,2′-Bipyridyl-3,3′-dicarboxylic Acid
We have succeeded in constructing a metal–organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2′‐bipyridyl‐3,3′‐dicarboxylic acid, 1), and two poly‐POM–MOFs (POM=polyoxometalate), {H[Cu(Hbpdc)(H2O)2]2[PM12O40]⋅n H2O}n (M=Mo for 2, W for 3), by the controllable self‐assembly of H2bpdc, Keggin‐anions...
Saved in:
Published in | Chemistry : a European journal Vol. 19; no. 5; pp. 1607 - 1616 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
28.01.2013
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have succeeded in constructing a metal–organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2′‐bipyridyl‐3,3′‐dicarboxylic acid, 1), and two poly‐POM–MOFs (POM=polyoxometalate), {H[Cu(Hbpdc)(H2O)2]2[PM12O40]⋅n H2O}n (M=Mo for 2, W for 3), by the controllable self‐assembly of H2bpdc, Keggin‐anions, and Cu2+ ions based on electrostatic and coordination interactions. Notably, these three compounds all crystallized in the monoclinic space group P21/n, and the Hbpdc− and bpdc2− ions have the same coordination mode. Interestingly, in compounds 2 and 3, Hbpdc− and the Keggin‐anion are covalently linked to the transition metal copper at the same time as polydentate organic ligand and as polydentate inorganic ligand, respectively. Complexes 2 and 3 represent new and rare examples of introducing the metal N‐heterocyclic multi‐carboxylic acid frameworks into POMs, thereby, opening a pathway for the design and the synthesis of multifunctional hybrid materials based on two building units. The Keggin‐anions being immobilized as part of the metal N‐heterocyclic multi‐carboxylic acid frameworks not only enhance the thermal stability of compounds 2 and 3, but also introduce functionality inside their structures, thereby, realizing four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs for the first time. Complexes 2 and 3 exhibit good proton conductivity (10−4 to ca. 10−3 S cm−1) at 100 °C in the relative humidity range 35 to about 98 %.
MOF connections: Three types of proton carriers are assembled in 1D hydrophilic channels of 3D metal–organic frameworks (MOFs) with two traditional but distinct building blocks, the metal N‐heterocyclic multi‐carboxylic acid frameworks and polyoxometalates (POMs), for the first time (see figure). These ordered poly‐POM–MOFs show good proton conductivity across a wide range of temperature and relative humidity (RH). They could be models to provide valuable points for establishing structure–activity relationships. |
---|---|
AbstractList | We have succeeded in constructing a metal-organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2'-bipyridyl-3,3'-dicarboxylic acid, 1), and two poly-POM-MOFs (POM=polyoxometalate), {H[Cu(Hbpdc)(H2O)2]2[PM12O40]nH2O}n (M=Mo for 2, W for 3), by the controllable self-assembly of H2bpdc, Keggin-anions, and Cu2+ ions based on electrostatic and coordination interactions. Notably, these three compounds all crystallized in the monoclinic space group P21/n, and the Hbpdc- and bpdc2- ions have the same coordination mode. Interestingly, in compounds 2 and 3, Hbpdc- and the Keggin-anion are covalently linked to the transition metal copper at the same time as polydentate organic ligand and as polydentate inorganic ligand, respectively. Complexes 2 and 3 represent new and rare examples of introducing the metal N-heterocyclic multi-carboxylic acid frameworks into POMs, thereby, opening a pathway for the design and the synthesis of multifunctional hybrid materials based on two building units. The Keggin-anions being immobilized as part of the metal N-heterocyclic multi-carboxylic acid frameworks not only enhance the thermal stability of compounds 2 and 3, but also introduce functionality inside their structures, thereby, realizing four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs for the first time. Complexes 2 and 3 exhibit good proton conductivity (10-4 to ca. 10-3Scm-1) at 100°C in the relative humidity range 35 to about 98%. [PUBLICATION ABSTRACT] We have succeeded in constructing a metal–organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2′‐bipyridyl‐3,3′‐dicarboxylic acid, 1), and two poly‐POM–MOFs (POM=polyoxometalate), {H[Cu(Hbpdc)(H2O)2]2[PM12O40]⋅n H2O}n (M=Mo for 2, W for 3), by the controllable self‐assembly of H2bpdc, Keggin‐anions, and Cu2+ ions based on electrostatic and coordination interactions. Notably, these three compounds all crystallized in the monoclinic space group P21/n, and the Hbpdc− and bpdc2− ions have the same coordination mode. Interestingly, in compounds 2 and 3, Hbpdc− and the Keggin‐anion are covalently linked to the transition metal copper at the same time as polydentate organic ligand and as polydentate inorganic ligand, respectively. Complexes 2 and 3 represent new and rare examples of introducing the metal N‐heterocyclic multi‐carboxylic acid frameworks into POMs, thereby, opening a pathway for the design and the synthesis of multifunctional hybrid materials based on two building units. The Keggin‐anions being immobilized as part of the metal N‐heterocyclic multi‐carboxylic acid frameworks not only enhance the thermal stability of compounds 2 and 3, but also introduce functionality inside their structures, thereby, realizing four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs for the first time. Complexes 2 and 3 exhibit good proton conductivity (10−4 to ca. 10−3 S cm−1) at 100 °C in the relative humidity range 35 to about 98 %. MOF connections: Three types of proton carriers are assembled in 1D hydrophilic channels of 3D metal–organic frameworks (MOFs) with two traditional but distinct building blocks, the metal N‐heterocyclic multi‐carboxylic acid frameworks and polyoxometalates (POMs), for the first time (see figure). These ordered poly‐POM–MOFs show good proton conductivity across a wide range of temperature and relative humidity (RH). They could be models to provide valuable points for establishing structure–activity relationships. |
Author | Wang, Xiaoxiang Duan, Xianying Wei, Meilin |
Author_xml | – sequence: 1 givenname: Meilin surname: Wei fullname: Wei, Meilin email: weimeilinhd@163.com organization: College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (P.R. China), Fax: (+86) 373-3329281 – sequence: 2 givenname: Xiaoxiang surname: Wang fullname: Wang, Xiaoxiang organization: College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (P.R. China), Fax: (+86) 373-3329281 – sequence: 3 givenname: Xianying surname: Duan fullname: Duan, Xianying organization: Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002 (P.R. China) |
BookMark | eNo9kM9O4zAQhy3EShTYK2dLe8UwtuOkPdKIP11RirQgJC6WG9tas2nctRMgN15hX4VH4klw6Kqn0cx8vxnp20e7jW8MQkcUTigAO61-m9UJA8qAU5HtoBEVjBJe5GIXjWCSFSQXfLKH9mN8AoBJzvkI_StDH1tV419t6Kq2CyZi1Wh8G3zrG1z6Rqexe3atSxtvscLzxcUXcvfi8e1iToa-9Ku1j65NzFRFo_GQ7WYzPPPN5iA7Zh9v72Tq1n1wuq8JP-bDQLtKhaV_7WtX4bPK6UP0zao6mu__6wG6vzi_K6_I9eJyVp5dE0fHLCNjahQ1wkKuC1NZZUSmraXLagyaA2imuIClSTKEHthCUctTQtOltYILfoB-bO6ug__bmdjKJ9-FJr2UlBUAOU22EjXZUC-uNr1cB7dSoZcU5OBcDs7l1rksr87n2y5lySbrYmtet1kV_si84IWQDzeXUmSP9Od0LqTgnys-ilA |
CODEN | CEUJED |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL 7SR 8BQ 8FD JG9 K9. |
DOI | 10.1002/chem.201203154 |
DatabaseName | Istex Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 1616 |
ExternalDocumentID | 2867406941 CHEM201203154 ark_67375_WNG_54Z1JBM5_5 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 20971038; 21171050 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ 7SR 8BQ 8FD AEYWJ AGQPQ AGYGG JG9 K9. |
ID | FETCH-LOGICAL-i1824-81ea1e5f06d7ecfae54dff1bc80d300d2a350be2035d81ea7a1f3a1ed1bff5353 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Sat Jul 05 23:19:56 EDT 2025 Wed Jan 22 16:50:51 EST 2025 Wed Oct 30 09:55:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i1824-81ea1e5f06d7ecfae54dff1bc80d300d2a350be2035d81ea7a1f3a1ed1bff5353 |
Notes | ark:/67375/WNG-54Z1JBM5-5 istex:C28D4A285B36D6D9927D3FCEEDD5594024F43213 ArticleID:CHEM201203154 MOF=metal-organic framework, POM-MOF=polyoxometalate-based metal-organic framework. National Natural Science Foundation of China - No. 20971038; No. 21171050 MOF=metal–organic framework, POM–MOF=polyoxometalate‐based metal–organic framework. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1270061539 |
PQPubID | 986340 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1270061539 wiley_primary_10_1002_chem_201203154_CHEM201203154 istex_primary_ark_67375_WNG_54Z1JBM5_5 |
PublicationCentury | 2000 |
PublicationDate | January 28, 2013 |
PublicationDateYYYYMMDD | 2013-01-28 |
PublicationDate_xml | – month: 01 year: 2013 text: January 28, 2013 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | G. Alberti, M. Casciola, Solid State Ionics 2001, 145, 3-16 H. A. An, E. B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su, L. Xu, Angew. Chem. 2006, 118, 918-922 Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120-4122. C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot, Inorg. Chem. 1983, 22, 207-216. C. Dey, T. Kundu, R. Banerjee, Chem. Commun. 2012, 48, 266-268. A. Sapronova, V. S. Bystrov, M. E. Green, Front. Biosci. 2003, 8, 1356-1370 B. Tazi, O. Savadogo, Electrochim. Acta 2000, 45, 4329-4339 C. P. Pradeep, F. Y. Li, C. Lydon, H. N. Miras, D. L. Long, L. Xu, L. Cronin, Chem. Eur. J. 2011, 17, 7472-7479 M. L. Wei, C. He, Q. Z. Sun, Q. J. Meng, C. Y. Duan, Inorg. Chem. 2007, 46, 5957-5966 X. J. Kong, Y. P. Ren, P. Q. Zheng, Y. X. Long, L. S. Long, R. B. Huang, L. S. Zheng, Inorg. Chem. 2006, 45, 10702-10711 Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, J. E. McGrath, J. Membr. Sci. 2003, 212, 263-282 W. L. Leong, J. J. Vittal, Chem. Rev. 2011, 111, 688-764 Z. Zhou, S. Li, Y. Zhang, M. Liu, J. Am. Chem. Soc. 2005, 127, 10824-10825. A. Shigematsu, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2011, 133, 2034-2036 C. Y. Duan, M. L. Wei, D. Guo, C. He, Q. J. Meng, J. Am. Chem. Soc. 2010, 132, 3321-3330 G. L. Law, K. L. Wong, Y. Y. Yang, Q. Y. Yi, G. H. Jia, W. T. Wong, P. A. Tanner, Inorg. Chem. 2007, 46, 9754-9759 M. L. Wei, P. F. Zhuang, J. H. Wang, X. X. Wang, J. Mol. Struct. 2011, 995, 51-57. Angew. Chem. Int. Ed. 2005, 44, 292-295 K. C. Szeto, K. O. Kongshaug, S. Jakobsen, M. Tilset, K. P. Lilleruda, Dalton Trans. 2008, 2054-2060 D. Hagrman, P. J. Hagrman, J. Zubieta, Angew. Chem. 1999, 111, 3359-3363 Angew. Chem. Int. Ed. 1999, 38, 3165-3168 T. Yamada, S. Morikawa, H. Kitagawa, Bull. Chem. Soc. Jpn. 2010, 83, 42-48 G. Inzelt, M. Pineri, J. W. Schultze, M. A. Vorotyntsev, Electrochim. Acta 2000, 45, 2403-2421 M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Chem. Rev. 2004, 104, 4587-4612 K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535-4585 J. Y. Wu, T. T. Yeh, Y. S. Wen, J. Twu, K. L. Lu, Cryst. Growth Des. 2006, 6, 467-473 E. Y. Lee, M. P. Suh, Angew. Chem. 2004, 116, 2858-2861 M. Sadakiyo, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 9906-9907 M. L. Wei, P. F. Zhuang, H. H. Li, Y. H. Yang, Eur. J. Inorg. Chem. 2011, 1473-1478 H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Tsukahara, T. Kitamori, Angew. Chem. 2012, 124, 3785 Angew. Chem. Int. Ed. 2012, 51, 3573-3577. S. Li, Z. Zhou, Y. Zhang, M. Liu, Chem. Mater. 2005, 17, 5884-5886 A. Verma, K. Scott, J. Solid State Electrochem. 2010, 14, 213-219. Angew. Chem. Int. Ed. 2004, 43, 2798-2801 A. M. Herring, J. Marcomol. Sci. Polym. Rev. 2006, 46, 245-296 C. Jiang, A. Lesbani, R. Kawamoto, S. Uchida, N. Mizuno, J. Am. Chem. Soc. 2006, 128, 14240-14241 J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan, G. K. H. Shimizu, J. Am. Chem. Soc. 2010, 132, 14055-14057. S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S. Kitagawa, Nat. Mater. 2009, 8, 831-836 I. Honma, S. Nomura, H. Nakajima, J. Membr. Sci. 2001, 185, 83-94. K. D. Kreuer, M. Hampele, K. Dolde, A. Rabenau, Solid State Ionics 1988, 28-30, 589-593. C. Inman, J. M. Knaust, S. W. Keller, Chem. Commun. 2002, 156-157 R. C. T. Slade, J. Barker, H. A. Pressman, J. H. Strange, Solid State Ionics 1988, 28-30, 594-600 M. J. Janik, R. J. Davis, M. Neurock, J. Am. Chem. Soc. 2005, 127, 5238-5245. I. V. Kozhevnikov, J. Mol. Catal. A 2007, 262, 86-92 Y. H. Liu, Y. L. Lu, H. C. Wu, J. C. Wang, K. L. Lu, Inorg. Chem. 2002, 41, 2592-2597 M. Misono, Chem. Commun. 2001, 1141-1152 C. A. Kent, B. P. Mehl, L. Q. Ma, J. M. Papanikolas, T. J. Meyer, W. B. Lin, J. Am. Chem. Soc. 2010, 132, 12767-12769 L. Saiz, M. L. Klein, Acc. Chem. Res. 2002, 35, 482-489 F. J. Ma, S. X. Liu, C. Y. Sun, D. D. Liang, G. J. Ren, F. Wei, Y. G. Chen, Z. M. Su, J. Am. Chem. Soc. 2011, 133, 4178-4181 Angew. Chem. Int. Ed. 2006, 45, 904-908 O. Nakamura, T. Kodama, I. Ogino, Y. Miyake, Chem. Lett. 1979, 17-18 Y. Nagao, M. Fujishima, R. Ikeda, S. Kanda, H. Kitagawa, Synth. Met. 2003, 133-134, 431-432. S. Morikawa, T. Yamada, H. Kitagawa, Chem. Lett. 2009, 38, 654-655 B. Z. Shan, Q. Zhao, N. Goswami, D. M. Eichhorn, D. P. Rillema, Coord. Chem. Rev. 2001, 211, 117-144. C. L. Lv, J. J. Hu, H. Zhou, Z. Li, R. N. N. Khan, Y. Wei, Chem. Eur. J. 2012, 18, 8681-8691. J. L. Malers, M. A. Sweikart, J. L. Horan, J. A. Turner, A. H. Herring, J. Power Sources 2007, 172, 83-88. X. G. Sang, Q. Y. Wu, W. Q. Pang, Mater. Chem. Phys. 2003, 82, 405-409 P. Yin, C. P. Pradeep, B. F. Zhang, F. Y. Li, C. Lydon, M. H. Rosnes, D. Li, E. Bitterlich, L. Xu, L. Cronin, T. B. Liu, Chem. Eur. J. 2012, 18, 8157-8162. M. L. Wei, P. F. Zhuang, Q. X. Miao, Y. Wang, J. Solid State Chem. 2011, 184, 1472-1477 V. Ramani, H. R. Kunz, J. M. Fenton, J. Membr. Sci. 2004, 232, 31-44 I. D. Brown, D. Altermatt, Acta Crystallogr. Sect. B 1985, 41, 244-247. N. Agmon, Chem. Phys. Lett. 1995, 244, 456-462. K. D. Kreuer, Chem. Mater. 1996, 8, 610-641 M. W. Perkovic, Inorg. Chem. 2000, 39, 4962-4968 E. Tynan, P. Jensen, P. E. Kruger, A. C. Lees, Chem. Commun. 2004, 776-777 N. C. Jeong, B. Samanta, C. Y. Lee, O. K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2012, 134, 51-54. J. A. Hurd, R. Vaidhyanathan, V. Thangadurai, C. I. Ratcliffe, I. L. Moudrakovski, G. K. H. Shimizu, Nat. Chem. 2009, 1, 705-710 J. M. Knaust, C. Inman, S. W. Keller, Chem. Commun. 2004, 492-493 J. Rozière, D. J. Jones, Annu. Rev. Mater. Res. 2003, 33, 503-555 C. J. Matthews, M. R. J. Elsegood, G. Bernardinelli, W. Clegg, A. F. Williams, Dalton Trans. 2004, 492-497 D. E. Katsoulis, Chem. Rev. 1998, 98, 359-388 G. Alberti, M. Casciola, U. Costantino, A. Peraio, T. Rega, J. Mater. Chem. 1995, 5, 1809-1812 C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, Z. M. Su, J. Am. Chem. Soc. 2009, 131, 1883-1888 A. Akutsu-Sato, H. Akutsu, S. S. Turner, P. Day, M. R. Probert, J. A. K. Howard, T. Akutagawa, S. Takeda, T. Nakamura, T. Mori, Angew. Chem. 2005, 117, 296-299 B. C. Wood, N. Marzari, Phys. Rev. B 2007, 76, 134301 M. L. Wei, C. He, W. J. Hua, C. Y. Duan, S. H. Li, Q. J. Meng, J. Am. Chem. Soc. 2006, 128, 13318-13319 M. Sadakiyo, H. Ōkawa, A. Shigematsu, M. Ohba, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2012, 134, 5472-5475 D.L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105-121 T. Yamada, M. Sadakiyo, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 3144-3145 B. C. Steele, A. Heinzel, Nature 2001, 414, 345-354 J. D. Kim, I. Honma, Solid State Ionics 2005, 176, 547-552. K. D. Kreuer, S. J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 2004, 104, 4637-4678 T. Jacobs, M. J. Hardie, Chem. Eur. J. 2012, 18, 267-276. 2011; 995 2001; 145 2010; 14 2001; 185 2005; 176 1988; 28–30 2000; 45 2007; 262 2012; 18 2011; 17 2007; 76 2011; 111 2007; 36 2006 2006; 118 45 1979 2010; 22 2001; 211 2012; 134 2001 2007; 172 2002; 41 2003; 8 1995; 244 2003; 82 1998; 98 2006; 128 1996; 8 2005 2005; 117 44 2001; 414 2004 2004; 116 43 2004; 104 2011 1999 1999; 111 38 2002; 35 2008 2006; 6 2004 1985; 41 2002 2009; 131 2003; 212 2011; 133 1995; 5 2003; 33 2010; 83 2004; 232 2000; 39 2006; 45 2006; 46 2005; 127 2010; 132 2009; 8 2012 2012; 124 51 2012; 48 2011; 184 2005; 17 2003; 133–134 2009; 1 2007; 46 2009; 38 |
References_xml | – reference: Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120-4122. – reference: G. Alberti, M. Casciola, Solid State Ionics 2001, 145, 3-16; – reference: I. D. Brown, D. Altermatt, Acta Crystallogr. Sect. B 1985, 41, 244-247. – reference: M. L. Wei, C. He, W. J. Hua, C. Y. Duan, S. H. Li, Q. J. Meng, J. Am. Chem. Soc. 2006, 128, 13318-13319; – reference: K. D. Kreuer, S. J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 2004, 104, 4637-4678; – reference: M. Misono, Chem. Commun. 2001, 1141-1152; – reference: B. C. Steele, A. Heinzel, Nature 2001, 414, 345-354; – reference: A. Sapronova, V. S. Bystrov, M. E. Green, Front. Biosci. 2003, 8, 1356-1370; – reference: M. Sadakiyo, H. Ōkawa, A. Shigematsu, M. Ohba, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2012, 134, 5472-5475; – reference: K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535-4585; – reference: C. Dey, T. Kundu, R. Banerjee, Chem. Commun. 2012, 48, 266-268. – reference: M. Sadakiyo, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 9906-9907; – reference: F. J. Ma, S. X. Liu, C. Y. Sun, D. D. Liang, G. J. Ren, F. Wei, Y. G. Chen, Z. M. Su, J. Am. Chem. Soc. 2011, 133, 4178-4181; – reference: J. A. Hurd, R. Vaidhyanathan, V. Thangadurai, C. I. Ratcliffe, I. L. Moudrakovski, G. K. H. Shimizu, Nat. Chem. 2009, 1, 705-710; – reference: Y. Nagao, M. Fujishima, R. Ikeda, S. Kanda, H. Kitagawa, Synth. Met. 2003, 133-134, 431-432. – reference: N. C. Jeong, B. Samanta, C. Y. Lee, O. K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2012, 134, 51-54. – reference: B. Tazi, O. Savadogo, Electrochim. Acta 2000, 45, 4329-4339; – reference: J. M. Knaust, C. Inman, S. W. Keller, Chem. Commun. 2004, 492-493; – reference: S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S. Kitagawa, Nat. Mater. 2009, 8, 831-836; – reference: J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan, G. K. H. Shimizu, J. Am. Chem. Soc. 2010, 132, 14055-14057. – reference: Y. H. Liu, Y. L. Lu, H. C. Wu, J. C. Wang, K. L. Lu, Inorg. Chem. 2002, 41, 2592-2597; – reference: Angew. Chem. Int. Ed. 2006, 45, 904-908; – reference: T. Jacobs, M. J. Hardie, Chem. Eur. J. 2012, 18, 267-276. – reference: E. Y. Lee, M. P. Suh, Angew. Chem. 2004, 116, 2858-2861; – reference: T. Yamada, S. Morikawa, H. Kitagawa, Bull. Chem. Soc. Jpn. 2010, 83, 42-48; – reference: C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, Z. M. Su, J. Am. Chem. Soc. 2009, 131, 1883-1888; – reference: C. A. Kent, B. P. Mehl, L. Q. Ma, J. M. Papanikolas, T. J. Meyer, W. B. Lin, J. Am. Chem. Soc. 2010, 132, 12767-12769; – reference: D. E. Katsoulis, Chem. Rev. 1998, 98, 359-388; – reference: S. Morikawa, T. Yamada, H. Kitagawa, Chem. Lett. 2009, 38, 654-655; – reference: A. Shigematsu, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2011, 133, 2034-2036; – reference: C. J. Matthews, M. R. J. Elsegood, G. Bernardinelli, W. Clegg, A. F. Williams, Dalton Trans. 2004, 492-497; – reference: G. Alberti, M. Casciola, U. Costantino, A. Peraio, T. Rega, J. Mater. Chem. 1995, 5, 1809-1812; – reference: C. L. Lv, J. J. Hu, H. Zhou, Z. Li, R. N. N. Khan, Y. Wei, Chem. Eur. J. 2012, 18, 8681-8691. – reference: J. D. Kim, I. Honma, Solid State Ionics 2005, 176, 547-552. – reference: M. W. Perkovic, Inorg. Chem. 2000, 39, 4962-4968; – reference: K. D. Kreuer, Chem. Mater. 1996, 8, 610-641; – reference: M. L. Wei, P. F. Zhuang, Q. X. Miao, Y. Wang, J. Solid State Chem. 2011, 184, 1472-1477; – reference: A. M. Herring, J. Marcomol. Sci. Polym. Rev. 2006, 46, 245-296; – reference: H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Tsukahara, T. Kitamori, Angew. Chem. 2012, 124, 3785; – reference: M. J. Janik, R. J. Davis, M. Neurock, J. Am. Chem. Soc. 2005, 127, 5238-5245. – reference: O. Nakamura, T. Kodama, I. Ogino, Y. Miyake, Chem. Lett. 1979, 17-18; – reference: G. L. Law, K. L. Wong, Y. Y. Yang, Q. Y. Yi, G. H. Jia, W. T. Wong, P. A. Tanner, Inorg. Chem. 2007, 46, 9754-9759; – reference: M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Chem. Rev. 2004, 104, 4587-4612; – reference: C. Y. Duan, M. L. Wei, D. Guo, C. He, Q. J. Meng, J. Am. Chem. Soc. 2010, 132, 3321-3330; – reference: X. G. Sang, Q. Y. Wu, W. Q. Pang, Mater. Chem. Phys. 2003, 82, 405-409; – reference: S. Li, Z. Zhou, Y. Zhang, M. Liu, Chem. Mater. 2005, 17, 5884-5886; – reference: I. V. Kozhevnikov, J. Mol. Catal. A 2007, 262, 86-92; – reference: Angew. Chem. Int. Ed. 2004, 43, 2798-2801; – reference: X. J. Kong, Y. P. Ren, P. Q. Zheng, Y. X. Long, L. S. Long, R. B. Huang, L. S. Zheng, Inorg. Chem. 2006, 45, 10702-10711; – reference: B. Z. Shan, Q. Zhao, N. Goswami, D. M. Eichhorn, D. P. Rillema, Coord. Chem. Rev. 2001, 211, 117-144. – reference: J. L. Malers, M. A. Sweikart, J. L. Horan, J. A. Turner, A. H. Herring, J. Power Sources 2007, 172, 83-88. – reference: W. L. Leong, J. J. Vittal, Chem. Rev. 2011, 111, 688-764; – reference: Angew. Chem. Int. Ed. 2005, 44, 292-295; – reference: K. C. Szeto, K. O. Kongshaug, S. Jakobsen, M. Tilset, K. P. Lilleruda, Dalton Trans. 2008, 2054-2060; – reference: D. Hagrman, P. J. Hagrman, J. Zubieta, Angew. Chem. 1999, 111, 3359-3363; – reference: Angew. Chem. Int. Ed. 1999, 38, 3165-3168; – reference: R. C. T. Slade, J. Barker, H. A. Pressman, J. H. Strange, Solid State Ionics 1988, 28-30, 594-600; – reference: H. A. An, E. B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su, L. Xu, Angew. Chem. 2006, 118, 918-922; – reference: I. Honma, S. Nomura, H. Nakajima, J. Membr. Sci. 2001, 185, 83-94. – reference: B. C. Wood, N. Marzari, Phys. Rev. B 2007, 76, 134301; – reference: C. Inman, J. M. Knaust, S. W. Keller, Chem. Commun. 2002, 156-157; – reference: J. Y. Wu, T. T. Yeh, Y. S. Wen, J. Twu, K. L. Lu, Cryst. Growth Des. 2006, 6, 467-473; – reference: K. D. Kreuer, M. Hampele, K. Dolde, A. Rabenau, Solid State Ionics 1988, 28-30, 589-593. – reference: J. Rozière, D. J. Jones, Annu. Rev. Mater. Res. 2003, 33, 503-555; – reference: T. Yamada, M. Sadakiyo, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 3144-3145; – reference: A. Verma, K. Scott, J. Solid State Electrochem. 2010, 14, 213-219. – reference: V. Ramani, H. R. Kunz, J. M. Fenton, J. Membr. Sci. 2004, 232, 31-44; – reference: C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot, Inorg. Chem. 1983, 22, 207-216. – reference: M. L. Wei, P. F. Zhuang, H. H. Li, Y. H. Yang, Eur. J. Inorg. Chem. 2011, 1473-1478; – reference: C. P. Pradeep, F. Y. Li, C. Lydon, H. N. Miras, D. L. Long, L. Xu, L. Cronin, Chem. Eur. J. 2011, 17, 7472-7479; – reference: Z. Zhou, S. Li, Y. Zhang, M. Liu, J. Am. Chem. Soc. 2005, 127, 10824-10825. – reference: M. L. Wei, P. F. Zhuang, J. H. Wang, X. X. Wang, J. Mol. Struct. 2011, 995, 51-57. – reference: Angew. Chem. Int. Ed. 2012, 51, 3573-3577. – reference: D.L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105-121; – reference: M. L. Wei, C. He, Q. Z. Sun, Q. J. Meng, C. Y. Duan, Inorg. Chem. 2007, 46, 5957-5966; – reference: Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, J. E. McGrath, J. Membr. Sci. 2003, 212, 263-282; – reference: E. Tynan, P. Jensen, P. E. Kruger, A. C. Lees, Chem. Commun. 2004, 776-777; – reference: C. Jiang, A. Lesbani, R. Kawamoto, S. Uchida, N. Mizuno, J. Am. Chem. Soc. 2006, 128, 14240-14241; – reference: L. Saiz, M. L. Klein, Acc. Chem. Res. 2002, 35, 482-489; – reference: N. Agmon, Chem. Phys. Lett. 1995, 244, 456-462. – reference: P. Yin, C. P. Pradeep, B. F. Zhang, F. Y. Li, C. Lydon, M. H. Rosnes, D. Li, E. Bitterlich, L. Xu, L. Cronin, T. B. Liu, Chem. Eur. J. 2012, 18, 8157-8162. – reference: A. Akutsu-Sato, H. Akutsu, S. S. Turner, P. Day, M. R. Probert, J. A. K. Howard, T. Akutagawa, S. Takeda, T. Nakamura, T. Mori, Angew. Chem. 2005, 117, 296-299; – reference: G. Inzelt, M. Pineri, J. W. Schultze, M. A. Vorotyntsev, Electrochim. Acta 2000, 45, 2403-2421; – start-page: 1983 end-page: 216 publication-title: Inorg. Chem. – start-page: 776 year: 2004 end-page: 777 publication-title: Chem. Commun. – volume: 134 start-page: 5472 year: 2012 end-page: 5475 publication-title: J. Am. Chem. Soc. – volume: 185 start-page: 83 year: 2001 end-page: 94 publication-title: J. Membr. Sci. – volume: 211 start-page: 117 year: 2001 end-page: 144 publication-title: Coord. Chem. Rev. – volume: 111 start-page: 688 year: 2011 end-page: 764 publication-title: Chem. Rev. – volume: 17 start-page: 7472 year: 2011 end-page: 7479 publication-title: Chem. Eur. J. – volume: 5 start-page: 1809 year: 1995 end-page: 1812 publication-title: J. Mater. Chem. – volume: 38 start-page: 654 year: 2009 end-page: 655 publication-title: Chem. Lett. – volume: 48 start-page: 266 year: 2012 end-page: 268 publication-title: Chem. Commun. – start-page: 492 year: 2004 end-page: 493 publication-title: Chem. Commun. – volume: 117 44 start-page: 296 292 year: 2005 2005 end-page: 299 295 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 18 start-page: 8681 year: 2012 end-page: 8691 publication-title: Chem. Eur. J. – volume: 45 start-page: 10702 year: 2006 end-page: 10711 publication-title: Inorg. Chem. – start-page: 2054 year: 2008 end-page: 2060 publication-title: Dalton Trans. – volume: 127 start-page: 10824 year: 2005 end-page: 10825 publication-title: J. Am. Chem. Soc. – volume: 116 43 start-page: 2858 2798 year: 2004 2004 end-page: 2861 2801 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 18 start-page: 267 year: 2012 end-page: 276 publication-title: Chem. Eur. J. – volume: 6 start-page: 467 year: 2006 end-page: 473 publication-title: Cryst. Growth Des. – volume: 124 51 start-page: 3785 3573 year: 2012 2012 end-page: 3577 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 244 start-page: 456 year: 1995 end-page: 462 publication-title: Chem. Phys. Lett. – volume: 104 start-page: 4587 year: 2004 end-page: 4612 publication-title: Chem. Rev. – volume: 414 start-page: 345 year: 2001 end-page: 354 publication-title: Nature – volume: 131 start-page: 1883 year: 2009 end-page: 1888 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 2034 year: 2011 end-page: 2036 publication-title: J. Am. Chem. Soc. – volume: 172 start-page: 83 year: 2007 end-page: 88 publication-title: J. Power Sources – volume: 8 start-page: 1356 year: 2003 end-page: 1370 publication-title: Front. Biosci. – volume: 33 start-page: 503 year: 2003 end-page: 555 publication-title: Annu. Rev. Mater. Res. – volume: 46 start-page: 9754 year: 2007 end-page: 9759 publication-title: Inorg. Chem. – volume: 128 start-page: 13318 year: 2006 end-page: 13319 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 4120 year: 2010 end-page: 4122 publication-title: Chem. Mater. – volume: 28–30 start-page: 594 year: 1988 end-page: 600 publication-title: Solid State Ionics – volume: 133 start-page: 4178 year: 2011 end-page: 4181 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 2403 year: 2000 end-page: 2421 publication-title: Electrochim. Acta – volume: 127 start-page: 5238 year: 2005 end-page: 5245 publication-title: J. Am. Chem. Soc. – volume: 118 45 start-page: 918 904 year: 2006 2006 end-page: 922 908 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 41 start-page: 2592 year: 2002 end-page: 2597 publication-title: Inorg. Chem. – start-page: 492 year: 2004 end-page: 497 publication-title: Dalton Trans. – volume: 46 start-page: 5957 year: 2007 end-page: 5966 publication-title: Inorg. Chem. – volume: 8 start-page: 831 year: 2009 end-page: 836 publication-title: Nat. Mater. – volume: 82 start-page: 405 year: 2003 end-page: 409 publication-title: Mater. Chem. Phys. – volume: 35 start-page: 482 year: 2002 end-page: 489 publication-title: Acc. Chem. Res. – volume: 176 start-page: 547 year: 2005 end-page: 552 publication-title: Solid State Ionics – volume: 76 start-page: 134301 year: 2007 publication-title: Phys. Rev. B – volume: 145 start-page: 3 year: 2001 end-page: 16 publication-title: Solid State Ionics – volume: 17 start-page: 5884 year: 2005 end-page: 5886 publication-title: Chem. Mater. – volume: 28–30 start-page: 589 year: 1988 end-page: 593 publication-title: Solid State Ionics – volume: 45 start-page: 4329 year: 2000 end-page: 4339 publication-title: Electrochim. Acta – volume: 83 start-page: 42 year: 2010 end-page: 48 publication-title: Bull. Chem. Soc. Jpn. – volume: 132 start-page: 14055 year: 2010 end-page: 14057 publication-title: J. Am. Chem. Soc. – volume: 98 start-page: 359 year: 1998 end-page: 388 publication-title: Chem. Rev. – volume: 184 start-page: 1472 year: 2011 end-page: 1477 publication-title: J. Solid State Chem. – volume: 995 start-page: 51 year: 2011 end-page: 57 publication-title: J. Mol. Struct. – volume: 104 start-page: 4535 year: 2004 end-page: 4585 publication-title: Chem. Rev. – volume: 1 start-page: 705 year: 2009 end-page: 710 publication-title: Nat. Chem. – volume: 18 start-page: 8157 year: 2012 end-page: 8162 publication-title: Chem. Eur. J. – volume: 8 start-page: 610 year: 1996 end-page: 641 publication-title: Chem. Mater. – volume: 212 start-page: 263 year: 2003 end-page: 282 publication-title: J. Membr. Sci. – volume: 131 start-page: 9906 year: 2009 end-page: 9907 publication-title: J. Am. Chem. Soc. – start-page: 1141 year: 2001 end-page: 1152 publication-title: Chem. Commun. – volume: 132 start-page: 3321 year: 2010 end-page: 3330 publication-title: J. Am. Chem. Soc. – start-page: 17 year: 1979 end-page: 18 publication-title: Chem. Lett. – volume: 133–134 start-page: 431 year: 2003 end-page: 432 publication-title: Synth. Met. – volume: 131 start-page: 3144 year: 2009 end-page: 3145 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 14240 year: 2006 end-page: 14241 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 105 year: 2007 end-page: 121 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 213 year: 2010 end-page: 219 publication-title: J. Solid State Electrochem. – volume: 134 start-page: 51 year: 2012 end-page: 54 publication-title: J. Am. Chem. Soc. – volume: 111 38 start-page: 3359 3165 year: 1999 1999 end-page: 3363 3168 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 39 start-page: 4962 year: 2000 end-page: 4968 publication-title: Inorg. Chem. – volume: 46 start-page: 245 year: 2006 end-page: 296 publication-title: J. Marcomol. Sci. Polym. Rev. – volume: 104 start-page: 4637 year: 2004 end-page: 4678 publication-title: Chem. Rev. – start-page: 1473 year: 2011 end-page: 1478 publication-title: Eur. J. Inorg. Chem. – volume: 132 start-page: 12767 year: 2010 end-page: 12769 publication-title: J. Am. Chem. Soc. – volume: 262 start-page: 86 year: 2007 end-page: 92 publication-title: J. Mol. Catal. A – volume: 41 start-page: 244 year: 1985 end-page: 247 publication-title: Acta Crystallogr. Sect. B – volume: 232 start-page: 31 year: 2004 end-page: 44 publication-title: J. Membr. Sci. – start-page: 156 year: 2002 end-page: 157 publication-title: Chem. Commun. |
SSID | ssj0009633 |
Score | 2.0531366 |
Snippet | We have succeeded in constructing a metal–organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2′‐bipyridyl‐3,3′‐dicarboxylic acid, 1), and two poly‐POM–MOFs... We have succeeded in constructing a metal-organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2'-bipyridyl-3,3'-dicarboxylic acid, 1), and two poly-POM-MOFs... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1607 |
SubjectTerms | Anions Carboxylic acids Chemistry conducting materials Conductivity Copper Ions metal-organic frameworks Metals polyoxometalates proton transport Relative humidity structure elucidation |
Title | Crystal Structures and Proton Conductivities of a MOF and Two POM-MOF Composites Based on CuII Ions and 2,2′-Bipyridyl-3,3′-dicarboxylic Acid |
URI | https://api.istex.fr/ark:/67375/WNG-54Z1JBM5-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201203154 https://www.proquest.com/docview/1270061539 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqLu2l_1WXQuVD1RMB24mT7JFddWGRFlALKurFsmNbilglKLBql9M-AhKnvkYfaZ-EGWd3gR7bWxLNRLFnbH8Tj78h5JOOuTexLCItUh8llrkIi7pHTkqbuIJ183COe3SY7p8mB2fy7MEp_pYfYvXDDUdGmK9xgGtzuXNPGgptwpPkXGCdAiQExYQtREVf7_mjwLvaWvJJFiEH65K1kYmdx-oATbFXfz3CmQ_RalhuBi-IXn5om2Vyvj25MtvF9V8cjv_Tkpfk-QKL0t3WeV6RJ656TZ72lyXg3pDf_WYK6HFMvwWW2QmE5lRXlh43NUBG2q8rZIvF8hMQb9PaU01HR4MgcvKzpsdHo_nsFp_grIPZYSDVg2XTUtSeDId0CE4f5MWWmM_-zGc3vfJi2pR2OobreCtuH-JmUmOgK8ZlQXeL0r4lp4MvJ_39aFHLISohgkminDvNnfQstZkrvHYysd5zU-TMxoxZoWPJjIMukBZlM819DBqWG-9lLON3ZK2qK_eeUJllFkBGznWukzSX2njR9RDIGpZ6kbMO-RxsqS5avg6lm3NMX8uk-n64p2Tygx_0RlLJDtlYGlstRu6lCjvxiIK7HSKC1VbvaRmehUJ7qZW9FHJXrO7W_0XpA3kmQpUNHol8g6yBTd0mYJ0r8zH48x1T2vug |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLdgHMaF_2iFDXxAnJbNduIkPa4VpR1LN0EnEBfLjm0pWpVMYRXrTv0ISJz2NfhI_ST4OU3HOMItsd6LYj__-T37-fcQeiNDalXI80Cy2AaRJiaApO6B4VxHJifd1N_jzsbx8DQ6_MLbaEK4C9PwQ6w33GBk-PkaBjhsSO_fsIa6SsFVcsogUUF0F92DtN7eq_p4wyDl-leTTT5KAmBhbXkbCdu_re_AKbTr5S2k-Sde9QvO4CFS7a82cSZne7MLtZdf_cXi-F91eYQerOAoPmj6z2N0x5RP0Ga_zQL3FF3367kDkFP8yRPNzpx3jmWp8UldOdSI-1UJhLGQgcK53LiyWOLseOBFJt8rfHKcLRc_oQQmHggQc1I9t3JqDNqz0QiPXL_38myXLRe_losfveJ8Xhd6PnXP4W7YFMJ5Uq1cW0yLHB_khX6GTgfvJv1hsErnEBTOiYmClBpJDbck1onJrTQ80tZSladEh4RoJkNOlHFNwDXIJpLa0GloqqzlIQ-fo42yKs0WwjxJtMMZKZWpjOKUS2VZ1zpfVpHYspR00FtvTHHeUHYIWZ9BBFvCxefxe8Gjr_Swl3HBO2i7tbZYDd5vwh_GAxDudhDzZlt_pyF5ZgLsJdb2EkBfsX578S9Kr9HmcJIdiaPR-MNLdJ_5pBs0YOk22nD2NTsO-lyoV75z_wb_Zv-7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELagSMCFf0RKAR8Qp25re-3dzbFJCU0haQStqLhY9tqWVo12o20jCKc8AhInXoNHypPg8SZpyxFuu9bMau0Z29_45xuEXquYOh2LPFIscRE3xEaQ1D2yQhhuc9LOwj3uwTA5OOGHp-L0yi3-hh9iveAGPSOM19DBJ8btXpKG-jrBTXLKIE8Bv4lu8YRk4Nf7Hy8JpLx7NcnkeRoBCeuKtpGw3ev6HptCs367BjSvwtUw3_TuI7X60-aYydnO9ELv5N__InH8n6o8QPeWYBTvNd7zEN2w5SN0p7vKAfcY_erWMw8fx_hToJmd-tgcq9LgUV15zIi7VQl0sZB_wgfcuHJY4cFRL4gcf63w6GiwmP-EEhh24HiYl-r4edNg0J72-7jvvT7Is222mP9ezH90ismsLsxs7J_j7bgphN2kWvumGBc53ssL8wSd9N4edw-iZTKHqPAhDI8yahW1wpHEpDZ3ygpunKM6z4iJCTFMxYJo65tAGJBNFXWx1zBUOydiET9FG2VV2mcIizQ1HmVkVGWKJ5lQ2rG285GsJoljGWmhN8GWctIQdkhVn8H5tVTIz8N3UvAv9LAzEFK00NbK2HLZdc9l2IoHGNxuIRastv5OQ_HMJNhLru0lgbxi_bb5L0qv0O3Rfk9-6A_fP0d3Wci4QSOWbaENb177wuOeC_0yuPYfJNz-cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+Structures+and+Proton+Conductivities+of+a+MOF+and+Two+POM%E2%80%93MOF+Composites+Based+on+CuII+Ions+and+2%2C2%E2%80%B2%E2%80%90Bipyridyl%E2%80%903%2C3%E2%80%B2%E2%80%90dicarboxylic+Acid&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wei%2C+Meilin&rft.au=Wang%2C+Xiaoxiang&rft.au=Duan%2C+Xianying&rft.date=2013-01-28&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=19&rft.issue=5&rft.spage=1607&rft.epage=1616&rft_id=info:doi/10.1002%2Fchem.201203154&rft.externalDBID=10.1002%252Fchem.201203154&rft.externalDocID=CHEM201203154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |