Crystal Structures and Proton Conductivities of a MOF and Two POM-MOF Composites Based on CuII Ions and 2,2′-Bipyridyl-3,3′-dicarboxylic Acid

We have succeeded in constructing a metal–organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2′‐bipyridyl‐3,3′‐dicarboxylic acid, 1), and two poly‐POM–MOFs (POM=polyoxometalate), {H[Cu(Hbpdc)(H2O)2]2[PM12O40]⋅n H2O}n (M=Mo for 2, W for 3), by the controllable self‐assembly of H2bpdc, Keggin‐anions...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 19; no. 5; pp. 1607 - 1616
Main Authors Wei, Meilin, Wang, Xiaoxiang, Duan, Xianying
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 28.01.2013
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have succeeded in constructing a metal–organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2′‐bipyridyl‐3,3′‐dicarboxylic acid, 1), and two poly‐POM–MOFs (POM=polyoxometalate), {H[Cu(Hbpdc)(H2O)2]2[PM12O40]⋅n H2O}n (M=Mo for 2, W for 3), by the controllable self‐assembly of H2bpdc, Keggin‐anions, and Cu2+ ions based on electrostatic and coordination interactions. Notably, these three compounds all crystallized in the monoclinic space group P21/n, and the Hbpdc− and bpdc2− ions have the same coordination mode. Interestingly, in compounds 2 and 3, Hbpdc− and the Keggin‐anion are covalently linked to the transition metal copper at the same time as polydentate organic ligand and as polydentate inorganic ligand, respectively. Complexes 2 and 3 represent new and rare examples of introducing the metal N‐heterocyclic multi‐carboxylic acid frameworks into POMs, thereby, opening a pathway for the design and the synthesis of multifunctional hybrid materials based on two building units. The Keggin‐anions being immobilized as part of the metal N‐heterocyclic multi‐carboxylic acid frameworks not only enhance the thermal stability of compounds 2 and 3, but also introduce functionality inside their structures, thereby, realizing four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs for the first time. Complexes 2 and 3 exhibit good proton conductivity (10−4 to ca. 10−3 S cm−1) at 100 °C in the relative humidity range 35 to about 98 %. MOF connections: Three types of proton carriers are assembled in 1D hydrophilic channels of 3D metal–organic frameworks (MOFs) with two traditional but distinct building blocks, the metal N‐heterocyclic multi‐carboxylic acid frameworks and polyoxometalates (POMs), for the first time (see figure). These ordered poly‐POM–MOFs show good proton conductivity across a wide range of temperature and relative humidity (RH). They could be models to provide valuable points for establishing structure–activity relationships.
AbstractList We have succeeded in constructing a metal-organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2'-bipyridyl-3,3'-dicarboxylic acid, 1), and two poly-POM-MOFs (POM=polyoxometalate), {H[Cu(Hbpdc)(H2O)2]2[PM12O40]nH2O}n (M=Mo for 2, W for 3), by the controllable self-assembly of H2bpdc, Keggin-anions, and Cu2+ ions based on electrostatic and coordination interactions. Notably, these three compounds all crystallized in the monoclinic space group P21/n, and the Hbpdc- and bpdc2- ions have the same coordination mode. Interestingly, in compounds 2 and 3, Hbpdc- and the Keggin-anion are covalently linked to the transition metal copper at the same time as polydentate organic ligand and as polydentate inorganic ligand, respectively. Complexes 2 and 3 represent new and rare examples of introducing the metal N-heterocyclic multi-carboxylic acid frameworks into POMs, thereby, opening a pathway for the design and the synthesis of multifunctional hybrid materials based on two building units. The Keggin-anions being immobilized as part of the metal N-heterocyclic multi-carboxylic acid frameworks not only enhance the thermal stability of compounds 2 and 3, but also introduce functionality inside their structures, thereby, realizing four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs for the first time. Complexes 2 and 3 exhibit good proton conductivity (10-4 to ca. 10-3Scm-1) at 100°C in the relative humidity range 35 to about 98%. [PUBLICATION ABSTRACT]
We have succeeded in constructing a metal–organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2′‐bipyridyl‐3,3′‐dicarboxylic acid, 1), and two poly‐POM–MOFs (POM=polyoxometalate), {H[Cu(Hbpdc)(H2O)2]2[PM12O40]⋅n H2O}n (M=Mo for 2, W for 3), by the controllable self‐assembly of H2bpdc, Keggin‐anions, and Cu2+ ions based on electrostatic and coordination interactions. Notably, these three compounds all crystallized in the monoclinic space group P21/n, and the Hbpdc− and bpdc2− ions have the same coordination mode. Interestingly, in compounds 2 and 3, Hbpdc− and the Keggin‐anion are covalently linked to the transition metal copper at the same time as polydentate organic ligand and as polydentate inorganic ligand, respectively. Complexes 2 and 3 represent new and rare examples of introducing the metal N‐heterocyclic multi‐carboxylic acid frameworks into POMs, thereby, opening a pathway for the design and the synthesis of multifunctional hybrid materials based on two building units. The Keggin‐anions being immobilized as part of the metal N‐heterocyclic multi‐carboxylic acid frameworks not only enhance the thermal stability of compounds 2 and 3, but also introduce functionality inside their structures, thereby, realizing four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs for the first time. Complexes 2 and 3 exhibit good proton conductivity (10−4 to ca. 10−3 S cm−1) at 100 °C in the relative humidity range 35 to about 98 %. MOF connections: Three types of proton carriers are assembled in 1D hydrophilic channels of 3D metal–organic frameworks (MOFs) with two traditional but distinct building blocks, the metal N‐heterocyclic multi‐carboxylic acid frameworks and polyoxometalates (POMs), for the first time (see figure). These ordered poly‐POM–MOFs show good proton conductivity across a wide range of temperature and relative humidity (RH). They could be models to provide valuable points for establishing structure–activity relationships.
Author Wang, Xiaoxiang
Duan, Xianying
Wei, Meilin
Author_xml – sequence: 1
  givenname: Meilin
  surname: Wei
  fullname: Wei, Meilin
  email: weimeilinhd@163.com
  organization: College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (P.R. China), Fax: (+86) 373-3329281
– sequence: 2
  givenname: Xiaoxiang
  surname: Wang
  fullname: Wang, Xiaoxiang
  organization: College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (P.R. China), Fax: (+86) 373-3329281
– sequence: 3
  givenname: Xianying
  surname: Duan
  fullname: Duan, Xianying
  organization: Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002 (P.R. China)
BookMark eNo9kM9O4zAQhy3EShTYK2dLe8UwtuOkPdKIP11RirQgJC6WG9tas2nctRMgN15hX4VH4klw6Kqn0cx8vxnp20e7jW8MQkcUTigAO61-m9UJA8qAU5HtoBEVjBJe5GIXjWCSFSQXfLKH9mN8AoBJzvkI_StDH1tV419t6Kq2CyZi1Wh8G3zrG1z6Rqexe3atSxtvscLzxcUXcvfi8e1iToa-9Ku1j65NzFRFo_GQ7WYzPPPN5iA7Zh9v72Tq1n1wuq8JP-bDQLtKhaV_7WtX4bPK6UP0zao6mu__6wG6vzi_K6_I9eJyVp5dE0fHLCNjahQ1wkKuC1NZZUSmraXLagyaA2imuIClSTKEHthCUctTQtOltYILfoB-bO6ug__bmdjKJ9-FJr2UlBUAOU22EjXZUC-uNr1cB7dSoZcU5OBcDs7l1rksr87n2y5lySbrYmtet1kV_si84IWQDzeXUmSP9Od0LqTgnys-ilA
CODEN CEUJED
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
7SR
8BQ
8FD
JG9
K9.
DOI 10.1002/chem.201203154
DatabaseName Istex
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 1616
ExternalDocumentID 2867406941
CHEM201203154
ark_67375_WNG_54Z1JBM5_5
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 20971038; 21171050
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
7SR
8BQ
8FD
AEYWJ
AGQPQ
AGYGG
JG9
K9.
ID FETCH-LOGICAL-i1824-81ea1e5f06d7ecfae54dff1bc80d300d2a350be2035d81ea7a1f3a1ed1bff5353
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Sat Jul 05 23:19:56 EDT 2025
Wed Jan 22 16:50:51 EST 2025
Wed Oct 30 09:55:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1824-81ea1e5f06d7ecfae54dff1bc80d300d2a350be2035d81ea7a1f3a1ed1bff5353
Notes ark:/67375/WNG-54Z1JBM5-5
istex:C28D4A285B36D6D9927D3FCEEDD5594024F43213
ArticleID:CHEM201203154
MOF=metal-organic framework, POM-MOF=polyoxometalate-based metal-organic framework.
National Natural Science Foundation of China - No. 20971038; No. 21171050
MOF=metal–organic framework, POM–MOF=polyoxometalate‐based metal–organic framework.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1270061539
PQPubID 986340
PageCount 10
ParticipantIDs proquest_journals_1270061539
wiley_primary_10_1002_chem_201203154_CHEM201203154
istex_primary_ark_67375_WNG_54Z1JBM5_5
PublicationCentury 2000
PublicationDate January 28, 2013
PublicationDateYYYYMMDD 2013-01-28
PublicationDate_xml – month: 01
  year: 2013
  text: January 28, 2013
  day: 28
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References G. Alberti, M. Casciola, Solid State Ionics 2001, 145, 3-16
H. A. An, E. B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su, L. Xu, Angew. Chem. 2006, 118, 918-922
Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120-4122.
C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot, Inorg. Chem. 1983, 22, 207-216.
C. Dey, T. Kundu, R. Banerjee, Chem. Commun. 2012, 48, 266-268.
A. Sapronova, V. S. Bystrov, M. E. Green, Front. Biosci. 2003, 8, 1356-1370
B. Tazi, O. Savadogo, Electrochim. Acta 2000, 45, 4329-4339
C. P. Pradeep, F. Y. Li, C. Lydon, H. N. Miras, D. L. Long, L. Xu, L. Cronin, Chem. Eur. J. 2011, 17, 7472-7479
M. L. Wei, C. He, Q. Z. Sun, Q. J. Meng, C. Y. Duan, Inorg. Chem. 2007, 46, 5957-5966
X. J. Kong, Y. P. Ren, P. Q. Zheng, Y. X. Long, L. S. Long, R. B. Huang, L. S. Zheng, Inorg. Chem. 2006, 45, 10702-10711
Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, J. E. McGrath, J. Membr. Sci. 2003, 212, 263-282
W. L. Leong, J. J. Vittal, Chem. Rev. 2011, 111, 688-764
Z. Zhou, S. Li, Y. Zhang, M. Liu, J. Am. Chem. Soc. 2005, 127, 10824-10825.
A. Shigematsu, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2011, 133, 2034-2036
C. Y. Duan, M. L. Wei, D. Guo, C. He, Q. J. Meng, J. Am. Chem. Soc. 2010, 132, 3321-3330
G. L. Law, K. L. Wong, Y. Y. Yang, Q. Y. Yi, G. H. Jia, W. T. Wong, P. A. Tanner, Inorg. Chem. 2007, 46, 9754-9759
M. L. Wei, P. F. Zhuang, J. H. Wang, X. X. Wang, J. Mol. Struct. 2011, 995, 51-57.
Angew. Chem. Int. Ed. 2005, 44, 292-295
K. C. Szeto, K. O. Kongshaug, S. Jakobsen, M. Tilset, K. P. Lilleruda, Dalton Trans. 2008, 2054-2060
D. Hagrman, P. J. Hagrman, J. Zubieta, Angew. Chem. 1999, 111, 3359-3363
Angew. Chem. Int. Ed. 1999, 38, 3165-3168
T. Yamada, S. Morikawa, H. Kitagawa, Bull. Chem. Soc. Jpn. 2010, 83, 42-48
G. Inzelt, M. Pineri, J. W. Schultze, M. A. Vorotyntsev, Electrochim. Acta 2000, 45, 2403-2421
M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Chem. Rev. 2004, 104, 4587-4612
K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535-4585
J. Y. Wu, T. T. Yeh, Y. S. Wen, J. Twu, K. L. Lu, Cryst. Growth Des. 2006, 6, 467-473
E. Y. Lee, M. P. Suh, Angew. Chem. 2004, 116, 2858-2861
M. Sadakiyo, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 9906-9907
M. L. Wei, P. F. Zhuang, H. H. Li, Y. H. Yang, Eur. J. Inorg. Chem. 2011, 1473-1478
H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Tsukahara, T. Kitamori, Angew. Chem. 2012, 124, 3785
Angew. Chem. Int. Ed. 2012, 51, 3573-3577.
S. Li, Z. Zhou, Y. Zhang, M. Liu, Chem. Mater. 2005, 17, 5884-5886
A. Verma, K. Scott, J. Solid State Electrochem. 2010, 14, 213-219.
Angew. Chem. Int. Ed. 2004, 43, 2798-2801
A. M. Herring, J. Marcomol. Sci. Polym. Rev. 2006, 46, 245-296
C. Jiang, A. Lesbani, R. Kawamoto, S. Uchida, N. Mizuno, J. Am. Chem. Soc. 2006, 128, 14240-14241
J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan, G. K. H. Shimizu, J. Am. Chem. Soc. 2010, 132, 14055-14057.
S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S. Kitagawa, Nat. Mater. 2009, 8, 831-836
I. Honma, S. Nomura, H. Nakajima, J. Membr. Sci. 2001, 185, 83-94.
K. D. Kreuer, M. Hampele, K. Dolde, A. Rabenau, Solid State Ionics 1988, 28-30, 589-593.
C. Inman, J. M. Knaust, S. W. Keller, Chem. Commun. 2002, 156-157
R. C. T. Slade, J. Barker, H. A. Pressman, J. H. Strange, Solid State Ionics 1988, 28-30, 594-600
M. J. Janik, R. J. Davis, M. Neurock, J. Am. Chem. Soc. 2005, 127, 5238-5245.
I. V. Kozhevnikov, J. Mol. Catal. A 2007, 262, 86-92
Y. H. Liu, Y. L. Lu, H. C. Wu, J. C. Wang, K. L. Lu, Inorg. Chem. 2002, 41, 2592-2597
M. Misono, Chem. Commun. 2001, 1141-1152
C. A. Kent, B. P. Mehl, L. Q. Ma, J. M. Papanikolas, T. J. Meyer, W. B. Lin, J. Am. Chem. Soc. 2010, 132, 12767-12769
L. Saiz, M. L. Klein, Acc. Chem. Res. 2002, 35, 482-489
F. J. Ma, S. X. Liu, C. Y. Sun, D. D. Liang, G. J. Ren, F. Wei, Y. G. Chen, Z. M. Su, J. Am. Chem. Soc. 2011, 133, 4178-4181
Angew. Chem. Int. Ed. 2006, 45, 904-908
O. Nakamura, T. Kodama, I. Ogino, Y. Miyake, Chem. Lett. 1979, 17-18
Y. Nagao, M. Fujishima, R. Ikeda, S. Kanda, H. Kitagawa, Synth. Met. 2003, 133-134, 431-432.
S. Morikawa, T. Yamada, H. Kitagawa, Chem. Lett. 2009, 38, 654-655
B. Z. Shan, Q. Zhao, N. Goswami, D. M. Eichhorn, D. P. Rillema, Coord. Chem. Rev. 2001, 211, 117-144.
C. L. Lv, J. J. Hu, H. Zhou, Z. Li, R. N. N. Khan, Y. Wei, Chem. Eur. J. 2012, 18, 8681-8691.
J. L. Malers, M. A. Sweikart, J. L. Horan, J. A. Turner, A. H. Herring, J. Power Sources 2007, 172, 83-88.
X. G. Sang, Q. Y. Wu, W. Q. Pang, Mater. Chem. Phys. 2003, 82, 405-409
P. Yin, C. P. Pradeep, B. F. Zhang, F. Y. Li, C. Lydon, M. H. Rosnes, D. Li, E. Bitterlich, L. Xu, L. Cronin, T. B. Liu, Chem. Eur. J. 2012, 18, 8157-8162.
M. L. Wei, P. F. Zhuang, Q. X. Miao, Y. Wang, J. Solid State Chem. 2011, 184, 1472-1477
V. Ramani, H. R. Kunz, J. M. Fenton, J. Membr. Sci. 2004, 232, 31-44
I. D. Brown, D. Altermatt, Acta Crystallogr. Sect. B 1985, 41, 244-247.
N. Agmon, Chem. Phys. Lett. 1995, 244, 456-462.
K. D. Kreuer, Chem. Mater. 1996, 8, 610-641
M. W. Perkovic, Inorg. Chem. 2000, 39, 4962-4968
E. Tynan, P. Jensen, P. E. Kruger, A. C. Lees, Chem. Commun. 2004, 776-777
N. C. Jeong, B. Samanta, C. Y. Lee, O. K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2012, 134, 51-54.
J. A. Hurd, R. Vaidhyanathan, V. Thangadurai, C. I. Ratcliffe, I. L. Moudrakovski, G. K. H. Shimizu, Nat. Chem. 2009, 1, 705-710
J. M. Knaust, C. Inman, S. W. Keller, Chem. Commun. 2004, 492-493
J. Rozière, D. J. Jones, Annu. Rev. Mater. Res. 2003, 33, 503-555
C. J. Matthews, M. R. J. Elsegood, G. Bernardinelli, W. Clegg, A. F. Williams, Dalton Trans. 2004, 492-497
D. E. Katsoulis, Chem. Rev. 1998, 98, 359-388
G. Alberti, M. Casciola, U. Costantino, A. Peraio, T. Rega, J. Mater. Chem. 1995, 5, 1809-1812
C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, Z. M. Su, J. Am. Chem. Soc. 2009, 131, 1883-1888
A. Akutsu-Sato, H. Akutsu, S. S. Turner, P. Day, M. R. Probert, J. A. K. Howard, T. Akutagawa, S. Takeda, T. Nakamura, T. Mori, Angew. Chem. 2005, 117, 296-299
B. C. Wood, N. Marzari, Phys. Rev. B 2007, 76, 134301
M. L. Wei, C. He, W. J. Hua, C. Y. Duan, S. H. Li, Q. J. Meng, J. Am. Chem. Soc. 2006, 128, 13318-13319
M. Sadakiyo, H. Ōkawa, A. Shigematsu, M. Ohba, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2012, 134, 5472-5475
D.L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105-121
T. Yamada, M. Sadakiyo, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 3144-3145
B. C. Steele, A. Heinzel, Nature 2001, 414, 345-354
J. D. Kim, I. Honma, Solid State Ionics 2005, 176, 547-552.
K. D. Kreuer, S. J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 2004, 104, 4637-4678
T. Jacobs, M. J. Hardie, Chem. Eur. J. 2012, 18, 267-276.
2011; 995
2001; 145
2010; 14
2001; 185
2005; 176
1988; 28–30
2000; 45
2007; 262
2012; 18
2011; 17
2007; 76
2011; 111
2007; 36
2006 2006; 118 45
1979
2010; 22
2001; 211
2012; 134
2001
2007; 172
2002; 41
2003; 8
1995; 244
2003; 82
1998; 98
2006; 128
1996; 8
2005 2005; 117 44
2001; 414
2004 2004; 116 43
2004; 104
2011
1999 1999; 111 38
2002; 35
2008
2006; 6
2004
1985; 41
2002
2009; 131
2003; 212
2011; 133
1995; 5
2003; 33
2010; 83
2004; 232
2000; 39
2006; 45
2006; 46
2005; 127
2010; 132
2009; 8
2012 2012; 124 51
2012; 48
2011; 184
2005; 17
2003; 133–134
2009; 1
2007; 46
2009; 38
References_xml – reference: Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120-4122.
– reference: G. Alberti, M. Casciola, Solid State Ionics 2001, 145, 3-16;
– reference: I. D. Brown, D. Altermatt, Acta Crystallogr. Sect. B 1985, 41, 244-247.
– reference: M. L. Wei, C. He, W. J. Hua, C. Y. Duan, S. H. Li, Q. J. Meng, J. Am. Chem. Soc. 2006, 128, 13318-13319;
– reference: K. D. Kreuer, S. J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 2004, 104, 4637-4678;
– reference: M. Misono, Chem. Commun. 2001, 1141-1152;
– reference: B. C. Steele, A. Heinzel, Nature 2001, 414, 345-354;
– reference: A. Sapronova, V. S. Bystrov, M. E. Green, Front. Biosci. 2003, 8, 1356-1370;
– reference: M. Sadakiyo, H. Ōkawa, A. Shigematsu, M. Ohba, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2012, 134, 5472-5475;
– reference: K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535-4585;
– reference: C. Dey, T. Kundu, R. Banerjee, Chem. Commun. 2012, 48, 266-268.
– reference: M. Sadakiyo, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 9906-9907;
– reference: F. J. Ma, S. X. Liu, C. Y. Sun, D. D. Liang, G. J. Ren, F. Wei, Y. G. Chen, Z. M. Su, J. Am. Chem. Soc. 2011, 133, 4178-4181;
– reference: J. A. Hurd, R. Vaidhyanathan, V. Thangadurai, C. I. Ratcliffe, I. L. Moudrakovski, G. K. H. Shimizu, Nat. Chem. 2009, 1, 705-710;
– reference: Y. Nagao, M. Fujishima, R. Ikeda, S. Kanda, H. Kitagawa, Synth. Met. 2003, 133-134, 431-432.
– reference: N. C. Jeong, B. Samanta, C. Y. Lee, O. K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2012, 134, 51-54.
– reference: B. Tazi, O. Savadogo, Electrochim. Acta 2000, 45, 4329-4339;
– reference: J. M. Knaust, C. Inman, S. W. Keller, Chem. Commun. 2004, 492-493;
– reference: S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S. Kitagawa, Nat. Mater. 2009, 8, 831-836;
– reference: J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan, G. K. H. Shimizu, J. Am. Chem. Soc. 2010, 132, 14055-14057.
– reference: Y. H. Liu, Y. L. Lu, H. C. Wu, J. C. Wang, K. L. Lu, Inorg. Chem. 2002, 41, 2592-2597;
– reference: Angew. Chem. Int. Ed. 2006, 45, 904-908;
– reference: T. Jacobs, M. J. Hardie, Chem. Eur. J. 2012, 18, 267-276.
– reference: E. Y. Lee, M. P. Suh, Angew. Chem. 2004, 116, 2858-2861;
– reference: T. Yamada, S. Morikawa, H. Kitagawa, Bull. Chem. Soc. Jpn. 2010, 83, 42-48;
– reference: C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, Z. M. Su, J. Am. Chem. Soc. 2009, 131, 1883-1888;
– reference: C. A. Kent, B. P. Mehl, L. Q. Ma, J. M. Papanikolas, T. J. Meyer, W. B. Lin, J. Am. Chem. Soc. 2010, 132, 12767-12769;
– reference: D. E. Katsoulis, Chem. Rev. 1998, 98, 359-388;
– reference: S. Morikawa, T. Yamada, H. Kitagawa, Chem. Lett. 2009, 38, 654-655;
– reference: A. Shigematsu, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2011, 133, 2034-2036;
– reference: C. J. Matthews, M. R. J. Elsegood, G. Bernardinelli, W. Clegg, A. F. Williams, Dalton Trans. 2004, 492-497;
– reference: G. Alberti, M. Casciola, U. Costantino, A. Peraio, T. Rega, J. Mater. Chem. 1995, 5, 1809-1812;
– reference: C. L. Lv, J. J. Hu, H. Zhou, Z. Li, R. N. N. Khan, Y. Wei, Chem. Eur. J. 2012, 18, 8681-8691.
– reference: J. D. Kim, I. Honma, Solid State Ionics 2005, 176, 547-552.
– reference: M. W. Perkovic, Inorg. Chem. 2000, 39, 4962-4968;
– reference: K. D. Kreuer, Chem. Mater. 1996, 8, 610-641;
– reference: M. L. Wei, P. F. Zhuang, Q. X. Miao, Y. Wang, J. Solid State Chem. 2011, 184, 1472-1477;
– reference: A. M. Herring, J. Marcomol. Sci. Polym. Rev. 2006, 46, 245-296;
– reference: H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Tsukahara, T. Kitamori, Angew. Chem. 2012, 124, 3785;
– reference: M. J. Janik, R. J. Davis, M. Neurock, J. Am. Chem. Soc. 2005, 127, 5238-5245.
– reference: O. Nakamura, T. Kodama, I. Ogino, Y. Miyake, Chem. Lett. 1979, 17-18;
– reference: G. L. Law, K. L. Wong, Y. Y. Yang, Q. Y. Yi, G. H. Jia, W. T. Wong, P. A. Tanner, Inorg. Chem. 2007, 46, 9754-9759;
– reference: M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Chem. Rev. 2004, 104, 4587-4612;
– reference: C. Y. Duan, M. L. Wei, D. Guo, C. He, Q. J. Meng, J. Am. Chem. Soc. 2010, 132, 3321-3330;
– reference: X. G. Sang, Q. Y. Wu, W. Q. Pang, Mater. Chem. Phys. 2003, 82, 405-409;
– reference: S. Li, Z. Zhou, Y. Zhang, M. Liu, Chem. Mater. 2005, 17, 5884-5886;
– reference: I. V. Kozhevnikov, J. Mol. Catal. A 2007, 262, 86-92;
– reference: Angew. Chem. Int. Ed. 2004, 43, 2798-2801;
– reference: X. J. Kong, Y. P. Ren, P. Q. Zheng, Y. X. Long, L. S. Long, R. B. Huang, L. S. Zheng, Inorg. Chem. 2006, 45, 10702-10711;
– reference: B. Z. Shan, Q. Zhao, N. Goswami, D. M. Eichhorn, D. P. Rillema, Coord. Chem. Rev. 2001, 211, 117-144.
– reference: J. L. Malers, M. A. Sweikart, J. L. Horan, J. A. Turner, A. H. Herring, J. Power Sources 2007, 172, 83-88.
– reference: W. L. Leong, J. J. Vittal, Chem. Rev. 2011, 111, 688-764;
– reference: Angew. Chem. Int. Ed. 2005, 44, 292-295;
– reference: K. C. Szeto, K. O. Kongshaug, S. Jakobsen, M. Tilset, K. P. Lilleruda, Dalton Trans. 2008, 2054-2060;
– reference: D. Hagrman, P. J. Hagrman, J. Zubieta, Angew. Chem. 1999, 111, 3359-3363;
– reference: Angew. Chem. Int. Ed. 1999, 38, 3165-3168;
– reference: R. C. T. Slade, J. Barker, H. A. Pressman, J. H. Strange, Solid State Ionics 1988, 28-30, 594-600;
– reference: H. A. An, E. B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su, L. Xu, Angew. Chem. 2006, 118, 918-922;
– reference: I. Honma, S. Nomura, H. Nakajima, J. Membr. Sci. 2001, 185, 83-94.
– reference: B. C. Wood, N. Marzari, Phys. Rev. B 2007, 76, 134301;
– reference: C. Inman, J. M. Knaust, S. W. Keller, Chem. Commun. 2002, 156-157;
– reference: J. Y. Wu, T. T. Yeh, Y. S. Wen, J. Twu, K. L. Lu, Cryst. Growth Des. 2006, 6, 467-473;
– reference: K. D. Kreuer, M. Hampele, K. Dolde, A. Rabenau, Solid State Ionics 1988, 28-30, 589-593.
– reference: J. Rozière, D. J. Jones, Annu. Rev. Mater. Res. 2003, 33, 503-555;
– reference: T. Yamada, M. Sadakiyo, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 3144-3145;
– reference: A. Verma, K. Scott, J. Solid State Electrochem. 2010, 14, 213-219.
– reference: V. Ramani, H. R. Kunz, J. M. Fenton, J. Membr. Sci. 2004, 232, 31-44;
– reference: C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot, Inorg. Chem. 1983, 22, 207-216.
– reference: M. L. Wei, P. F. Zhuang, H. H. Li, Y. H. Yang, Eur. J. Inorg. Chem. 2011, 1473-1478;
– reference: C. P. Pradeep, F. Y. Li, C. Lydon, H. N. Miras, D. L. Long, L. Xu, L. Cronin, Chem. Eur. J. 2011, 17, 7472-7479;
– reference: Z. Zhou, S. Li, Y. Zhang, M. Liu, J. Am. Chem. Soc. 2005, 127, 10824-10825.
– reference: M. L. Wei, P. F. Zhuang, J. H. Wang, X. X. Wang, J. Mol. Struct. 2011, 995, 51-57.
– reference: Angew. Chem. Int. Ed. 2012, 51, 3573-3577.
– reference: D.L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105-121;
– reference: M. L. Wei, C. He, Q. Z. Sun, Q. J. Meng, C. Y. Duan, Inorg. Chem. 2007, 46, 5957-5966;
– reference: Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, J. E. McGrath, J. Membr. Sci. 2003, 212, 263-282;
– reference: E. Tynan, P. Jensen, P. E. Kruger, A. C. Lees, Chem. Commun. 2004, 776-777;
– reference: C. Jiang, A. Lesbani, R. Kawamoto, S. Uchida, N. Mizuno, J. Am. Chem. Soc. 2006, 128, 14240-14241;
– reference: L. Saiz, M. L. Klein, Acc. Chem. Res. 2002, 35, 482-489;
– reference: N. Agmon, Chem. Phys. Lett. 1995, 244, 456-462.
– reference: P. Yin, C. P. Pradeep, B. F. Zhang, F. Y. Li, C. Lydon, M. H. Rosnes, D. Li, E. Bitterlich, L. Xu, L. Cronin, T. B. Liu, Chem. Eur. J. 2012, 18, 8157-8162.
– reference: A. Akutsu-Sato, H. Akutsu, S. S. Turner, P. Day, M. R. Probert, J. A. K. Howard, T. Akutagawa, S. Takeda, T. Nakamura, T. Mori, Angew. Chem. 2005, 117, 296-299;
– reference: G. Inzelt, M. Pineri, J. W. Schultze, M. A. Vorotyntsev, Electrochim. Acta 2000, 45, 2403-2421;
– start-page: 1983
  end-page: 216
  publication-title: Inorg. Chem.
– start-page: 776
  year: 2004
  end-page: 777
  publication-title: Chem. Commun.
– volume: 134
  start-page: 5472
  year: 2012
  end-page: 5475
  publication-title: J. Am. Chem. Soc.
– volume: 185
  start-page: 83
  year: 2001
  end-page: 94
  publication-title: J. Membr. Sci.
– volume: 211
  start-page: 117
  year: 2001
  end-page: 144
  publication-title: Coord. Chem. Rev.
– volume: 111
  start-page: 688
  year: 2011
  end-page: 764
  publication-title: Chem. Rev.
– volume: 17
  start-page: 7472
  year: 2011
  end-page: 7479
  publication-title: Chem. Eur. J.
– volume: 5
  start-page: 1809
  year: 1995
  end-page: 1812
  publication-title: J. Mater. Chem.
– volume: 38
  start-page: 654
  year: 2009
  end-page: 655
  publication-title: Chem. Lett.
– volume: 48
  start-page: 266
  year: 2012
  end-page: 268
  publication-title: Chem. Commun.
– start-page: 492
  year: 2004
  end-page: 493
  publication-title: Chem. Commun.
– volume: 117 44
  start-page: 296 292
  year: 2005 2005
  end-page: 299 295
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 18
  start-page: 8681
  year: 2012
  end-page: 8691
  publication-title: Chem. Eur. J.
– volume: 45
  start-page: 10702
  year: 2006
  end-page: 10711
  publication-title: Inorg. Chem.
– start-page: 2054
  year: 2008
  end-page: 2060
  publication-title: Dalton Trans.
– volume: 127
  start-page: 10824
  year: 2005
  end-page: 10825
  publication-title: J. Am. Chem. Soc.
– volume: 116 43
  start-page: 2858 2798
  year: 2004 2004
  end-page: 2861 2801
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 18
  start-page: 267
  year: 2012
  end-page: 276
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 467
  year: 2006
  end-page: 473
  publication-title: Cryst. Growth Des.
– volume: 124 51
  start-page: 3785 3573
  year: 2012 2012
  end-page: 3577
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 244
  start-page: 456
  year: 1995
  end-page: 462
  publication-title: Chem. Phys. Lett.
– volume: 104
  start-page: 4587
  year: 2004
  end-page: 4612
  publication-title: Chem. Rev.
– volume: 414
  start-page: 345
  year: 2001
  end-page: 354
  publication-title: Nature
– volume: 131
  start-page: 1883
  year: 2009
  end-page: 1888
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 2034
  year: 2011
  end-page: 2036
  publication-title: J. Am. Chem. Soc.
– volume: 172
  start-page: 83
  year: 2007
  end-page: 88
  publication-title: J. Power Sources
– volume: 8
  start-page: 1356
  year: 2003
  end-page: 1370
  publication-title: Front. Biosci.
– volume: 33
  start-page: 503
  year: 2003
  end-page: 555
  publication-title: Annu. Rev. Mater. Res.
– volume: 46
  start-page: 9754
  year: 2007
  end-page: 9759
  publication-title: Inorg. Chem.
– volume: 128
  start-page: 13318
  year: 2006
  end-page: 13319
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 4120
  year: 2010
  end-page: 4122
  publication-title: Chem. Mater.
– volume: 28–30
  start-page: 594
  year: 1988
  end-page: 600
  publication-title: Solid State Ionics
– volume: 133
  start-page: 4178
  year: 2011
  end-page: 4181
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 2403
  year: 2000
  end-page: 2421
  publication-title: Electrochim. Acta
– volume: 127
  start-page: 5238
  year: 2005
  end-page: 5245
  publication-title: J. Am. Chem. Soc.
– volume: 118 45
  start-page: 918 904
  year: 2006 2006
  end-page: 922 908
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 41
  start-page: 2592
  year: 2002
  end-page: 2597
  publication-title: Inorg. Chem.
– start-page: 492
  year: 2004
  end-page: 497
  publication-title: Dalton Trans.
– volume: 46
  start-page: 5957
  year: 2007
  end-page: 5966
  publication-title: Inorg. Chem.
– volume: 8
  start-page: 831
  year: 2009
  end-page: 836
  publication-title: Nat. Mater.
– volume: 82
  start-page: 405
  year: 2003
  end-page: 409
  publication-title: Mater. Chem. Phys.
– volume: 35
  start-page: 482
  year: 2002
  end-page: 489
  publication-title: Acc. Chem. Res.
– volume: 176
  start-page: 547
  year: 2005
  end-page: 552
  publication-title: Solid State Ionics
– volume: 76
  start-page: 134301
  year: 2007
  publication-title: Phys. Rev. B
– volume: 145
  start-page: 3
  year: 2001
  end-page: 16
  publication-title: Solid State Ionics
– volume: 17
  start-page: 5884
  year: 2005
  end-page: 5886
  publication-title: Chem. Mater.
– volume: 28–30
  start-page: 589
  year: 1988
  end-page: 593
  publication-title: Solid State Ionics
– volume: 45
  start-page: 4329
  year: 2000
  end-page: 4339
  publication-title: Electrochim. Acta
– volume: 83
  start-page: 42
  year: 2010
  end-page: 48
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 132
  start-page: 14055
  year: 2010
  end-page: 14057
  publication-title: J. Am. Chem. Soc.
– volume: 98
  start-page: 359
  year: 1998
  end-page: 388
  publication-title: Chem. Rev.
– volume: 184
  start-page: 1472
  year: 2011
  end-page: 1477
  publication-title: J. Solid State Chem.
– volume: 995
  start-page: 51
  year: 2011
  end-page: 57
  publication-title: J. Mol. Struct.
– volume: 104
  start-page: 4535
  year: 2004
  end-page: 4585
  publication-title: Chem. Rev.
– volume: 1
  start-page: 705
  year: 2009
  end-page: 710
  publication-title: Nat. Chem.
– volume: 18
  start-page: 8157
  year: 2012
  end-page: 8162
  publication-title: Chem. Eur. J.
– volume: 8
  start-page: 610
  year: 1996
  end-page: 641
  publication-title: Chem. Mater.
– volume: 212
  start-page: 263
  year: 2003
  end-page: 282
  publication-title: J. Membr. Sci.
– volume: 131
  start-page: 9906
  year: 2009
  end-page: 9907
  publication-title: J. Am. Chem. Soc.
– start-page: 1141
  year: 2001
  end-page: 1152
  publication-title: Chem. Commun.
– volume: 132
  start-page: 3321
  year: 2010
  end-page: 3330
  publication-title: J. Am. Chem. Soc.
– start-page: 17
  year: 1979
  end-page: 18
  publication-title: Chem. Lett.
– volume: 133–134
  start-page: 431
  year: 2003
  end-page: 432
  publication-title: Synth. Met.
– volume: 131
  start-page: 3144
  year: 2009
  end-page: 3145
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 14240
  year: 2006
  end-page: 14241
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 105
  year: 2007
  end-page: 121
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 213
  year: 2010
  end-page: 219
  publication-title: J. Solid State Electrochem.
– volume: 134
  start-page: 51
  year: 2012
  end-page: 54
  publication-title: J. Am. Chem. Soc.
– volume: 111 38
  start-page: 3359 3165
  year: 1999 1999
  end-page: 3363 3168
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 39
  start-page: 4962
  year: 2000
  end-page: 4968
  publication-title: Inorg. Chem.
– volume: 46
  start-page: 245
  year: 2006
  end-page: 296
  publication-title: J. Marcomol. Sci. Polym. Rev.
– volume: 104
  start-page: 4637
  year: 2004
  end-page: 4678
  publication-title: Chem. Rev.
– start-page: 1473
  year: 2011
  end-page: 1478
  publication-title: Eur. J. Inorg. Chem.
– volume: 132
  start-page: 12767
  year: 2010
  end-page: 12769
  publication-title: J. Am. Chem. Soc.
– volume: 262
  start-page: 86
  year: 2007
  end-page: 92
  publication-title: J. Mol. Catal. A
– volume: 41
  start-page: 244
  year: 1985
  end-page: 247
  publication-title: Acta Crystallogr. Sect. B
– volume: 232
  start-page: 31
  year: 2004
  end-page: 44
  publication-title: J. Membr. Sci.
– start-page: 156
  year: 2002
  end-page: 157
  publication-title: Chem. Commun.
SSID ssj0009633
Score 2.0531366
Snippet We have succeeded in constructing a metal–organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2′‐bipyridyl‐3,3′‐dicarboxylic acid, 1), and two poly‐POM–MOFs...
We have succeeded in constructing a metal-organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2'-bipyridyl-3,3'-dicarboxylic acid, 1), and two poly-POM-MOFs...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1607
SubjectTerms Anions
Carboxylic acids
Chemistry
conducting materials
Conductivity
Copper
Ions
metal-organic frameworks
Metals
polyoxometalates
proton transport
Relative humidity
structure elucidation
Title Crystal Structures and Proton Conductivities of a MOF and Two POM-MOF Composites Based on CuII Ions and 2,2′-Bipyridyl-3,3′-dicarboxylic Acid
URI https://api.istex.fr/ark:/67375/WNG-54Z1JBM5-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201203154
https://www.proquest.com/docview/1270061539
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqLu2l_1WXQuVD1RMB24mT7JFddWGRFlALKurFsmNbilglKLBql9M-AhKnvkYfaZ-EGWd3gR7bWxLNRLFnbH8Tj78h5JOOuTexLCItUh8llrkIi7pHTkqbuIJ183COe3SY7p8mB2fy7MEp_pYfYvXDDUdGmK9xgGtzuXNPGgptwpPkXGCdAiQExYQtREVf7_mjwLvaWvJJFiEH65K1kYmdx-oATbFXfz3CmQ_RalhuBi-IXn5om2Vyvj25MtvF9V8cjv_Tkpfk-QKL0t3WeV6RJ656TZ72lyXg3pDf_WYK6HFMvwWW2QmE5lRXlh43NUBG2q8rZIvF8hMQb9PaU01HR4MgcvKzpsdHo_nsFp_grIPZYSDVg2XTUtSeDId0CE4f5MWWmM_-zGc3vfJi2pR2OobreCtuH-JmUmOgK8ZlQXeL0r4lp4MvJ_39aFHLISohgkminDvNnfQstZkrvHYysd5zU-TMxoxZoWPJjIMukBZlM819DBqWG-9lLON3ZK2qK_eeUJllFkBGznWukzSX2njR9RDIGpZ6kbMO-RxsqS5avg6lm3NMX8uk-n64p2Tygx_0RlLJDtlYGlstRu6lCjvxiIK7HSKC1VbvaRmehUJ7qZW9FHJXrO7W_0XpA3kmQpUNHol8g6yBTd0mYJ0r8zH48x1T2vug
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLdgHMaF_2iFDXxAnJbNduIkPa4VpR1LN0EnEBfLjm0pWpVMYRXrTv0ISJz2NfhI_ST4OU3HOMItsd6LYj__-T37-fcQeiNDalXI80Cy2AaRJiaApO6B4VxHJifd1N_jzsbx8DQ6_MLbaEK4C9PwQ6w33GBk-PkaBjhsSO_fsIa6SsFVcsogUUF0F92DtN7eq_p4wyDl-leTTT5KAmBhbXkbCdu_re_AKbTr5S2k-Sde9QvO4CFS7a82cSZne7MLtZdf_cXi-F91eYQerOAoPmj6z2N0x5RP0Ga_zQL3FF3367kDkFP8yRPNzpx3jmWp8UldOdSI-1UJhLGQgcK53LiyWOLseOBFJt8rfHKcLRc_oQQmHggQc1I9t3JqDNqz0QiPXL_38myXLRe_losfveJ8Xhd6PnXP4W7YFMJ5Uq1cW0yLHB_khX6GTgfvJv1hsErnEBTOiYmClBpJDbck1onJrTQ80tZSladEh4RoJkNOlHFNwDXIJpLa0GloqqzlIQ-fo42yKs0WwjxJtMMZKZWpjOKUS2VZ1zpfVpHYspR00FtvTHHeUHYIWZ9BBFvCxefxe8Gjr_Swl3HBO2i7tbZYDd5vwh_GAxDudhDzZlt_pyF5ZgLsJdb2EkBfsX578S9Kr9HmcJIdiaPR-MNLdJ_5pBs0YOk22nD2NTsO-lyoV75z_wb_Zv-7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELagSMCFf0RKAR8Qp25re-3dzbFJCU0haQStqLhY9tqWVo12o20jCKc8AhInXoNHypPg8SZpyxFuu9bMau0Z29_45xuEXquYOh2LPFIscRE3xEaQ1D2yQhhuc9LOwj3uwTA5OOGHp-L0yi3-hh9iveAGPSOM19DBJ8btXpKG-jrBTXLKIE8Bv4lu8YRk4Nf7Hy8JpLx7NcnkeRoBCeuKtpGw3ev6HptCs367BjSvwtUw3_TuI7X60-aYydnO9ELv5N__InH8n6o8QPeWYBTvNd7zEN2w5SN0p7vKAfcY_erWMw8fx_hToJmd-tgcq9LgUV15zIi7VQl0sZB_wgfcuHJY4cFRL4gcf63w6GiwmP-EEhh24HiYl-r4edNg0J72-7jvvT7Is222mP9ezH90ismsLsxs7J_j7bgphN2kWvumGBc53ssL8wSd9N4edw-iZTKHqPAhDI8yahW1wpHEpDZ3ygpunKM6z4iJCTFMxYJo65tAGJBNFXWx1zBUOydiET9FG2VV2mcIizQ1HmVkVGWKJ5lQ2rG285GsJoljGWmhN8GWctIQdkhVn8H5tVTIz8N3UvAv9LAzEFK00NbK2HLZdc9l2IoHGNxuIRastv5OQ_HMJNhLru0lgbxi_bb5L0qv0O3Rfk9-6A_fP0d3Wci4QSOWbaENb177wuOeC_0yuPYfJNz-cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+Structures+and+Proton+Conductivities+of+a+MOF+and+Two+POM%E2%80%93MOF+Composites+Based+on+CuII+Ions+and+2%2C2%E2%80%B2%E2%80%90Bipyridyl%E2%80%903%2C3%E2%80%B2%E2%80%90dicarboxylic+Acid&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wei%2C+Meilin&rft.au=Wang%2C+Xiaoxiang&rft.au=Duan%2C+Xianying&rft.date=2013-01-28&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=19&rft.issue=5&rft.spage=1607&rft.epage=1616&rft_id=info:doi/10.1002%2Fchem.201203154&rft.externalDBID=10.1002%252Fchem.201203154&rft.externalDocID=CHEM201203154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon