Subject-loaded quadrifilar helical-antenna RF coil with high B1+ field uniformity and large FOV for 3-T MRI

A novel method for excitation of RF B1 field in high‐field (3‐T) magnetic resonance imaging (MRI) systems using a subject‐loaded quadrifilar helical antenna as an RF coil is proposed, evaluated, and demonstrated. Design, analysis, characterization, and evaluation of the novel coil when situated in a...

Full description

Saved in:
Bibliographic Details
Published inConcepts in magnetic resonance. Part B, Magnetic resonance engineering Vol. 46B; no. 3; pp. 106 - 117
Main Authors Athalye, Pranav S., Šekeljić, Nada J., Ilić, Milan M., Tonyushkin, Alexey A., Notaroš, Branislav M.
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.07.2016
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel method for excitation of RF B1 field in high‐field (3‐T) magnetic resonance imaging (MRI) systems using a subject‐loaded quadrifilar helical antenna as an RF coil is proposed, evaluated, and demonstrated. Design, analysis, characterization, and evaluation of the novel coil when situated in a 3‐T MRI bore and loaded with different phantoms are performed and cross‐validated by extensive numerical simulations using multiple computational electromagnetics techniques. The results for the quadrifilar helical‐antenna RF body coil show (a) strong field penetration in the entire phantoms; (b) excellent right‐hand circular polarization (RCP); (c) high spatial uniformity of RCP RF magnetic field, B1+, throughout the phantoms; (d) large field of view (FOV); (e) good transmit efficiency; and (f) low local specific absorption rate (SAR). The examples show that the new RF coil provides substantially better B1+‐field uniformity and much larger FOV than any of the previously reported numerical and experimental results for the existing RF coil designs at 3 T in literature that enable comparison. In addition, helical RF body coils of different lengths can, for instance, easily provide an excellent RCP and highly uniform B1+‐field within the MRI maximum FOV length of 50 cm, and even 100 cm. The proposed MRI RF coil yields a remarkable improvement in the field uniformity in the longitudinal direction, for various phantoms, with comparable efficiency and SAR levels.
AbstractList A novel method for excitation of RF B1 field in high-field (3-T) magnetic resonance imaging (MRI) systems using a subject-loaded quadrifilar helical antenna as an RF coil is proposed, evaluated, and demonstrated. Design, analysis, characterization, and evaluation of the novel coil when situated in a 3-T MRI bore and loaded with different phantoms are performed and cross-validated by extensive numerical simulations using multiple computational electromagnetics techniques. The results for the quadrifilar helical-antenna RF body coil show (a) strong field penetration in the entire phantoms; (b) excellent right-hand circular polarization (RCP); (c) high spatial uniformity of RCP RF magnetic field, B1+, throughout the phantoms; (d) large field of view (FOV); (e) good transmit efficiency; and (f) low local specific absorption rate (SAR). The examples show that the new RF coil provides substantially better B1+-field uniformity and much larger FOV than any of the previously reported numerical and experimental results for the existing RF coil designs at 3 T in literature that enable comparison. In addition, helical RF body coils of different lengths can, for instance, easily provide an excellent RCP and highly uniform B1+-field within the MRI maximum FOV length of 50 cm, and even 100 cm. The proposed MRI RF coil yields a remarkable improvement in the field uniformity in the longitudinal direction, for various phantoms, with comparable efficiency and SAR levels.
A novel method for excitation of RF B1 field in high‐field (3‐T) magnetic resonance imaging (MRI) systems using a subject‐loaded quadrifilar helical antenna as an RF coil is proposed, evaluated, and demonstrated. Design, analysis, characterization, and evaluation of the novel coil when situated in a 3‐T MRI bore and loaded with different phantoms are performed and cross‐validated by extensive numerical simulations using multiple computational electromagnetics techniques. The results for the quadrifilar helical‐antenna RF body coil show (a) strong field penetration in the entire phantoms; (b) excellent right‐hand circular polarization (RCP); (c) high spatial uniformity of RCP RF magnetic field, B1+, throughout the phantoms; (d) large field of view (FOV); (e) good transmit efficiency; and (f) low local specific absorption rate (SAR). The examples show that the new RF coil provides substantially better B1+‐field uniformity and much larger FOV than any of the previously reported numerical and experimental results for the existing RF coil designs at 3 T in literature that enable comparison. In addition, helical RF body coils of different lengths can, for instance, easily provide an excellent RCP and highly uniform B1+‐field within the MRI maximum FOV length of 50 cm, and even 100 cm. The proposed MRI RF coil yields a remarkable improvement in the field uniformity in the longitudinal direction, for various phantoms, with comparable efficiency and SAR levels.
Author Šekeljić, Nada J.
Ilić, Milan M.
Notaroš, Branislav M.
Tonyushkin, Alexey A.
Athalye, Pranav S.
Author_xml – sequence: 1
  givenname: Pranav S.
  surname: Athalye
  fullname: Athalye, Pranav S.
  organization: Department of Electrical and Computer Engineering, Colorado State University, CO, Fort Collins, USA
– sequence: 2
  givenname: Nada J.
  surname: Šekeljić
  fullname: Šekeljić, Nada J.
  organization: Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
– sequence: 3
  givenname: Milan M.
  surname: Ilić
  fullname: Ilić, Milan M.
  organization: Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
– sequence: 4
  givenname: Alexey A.
  surname: Tonyushkin
  fullname: Tonyushkin, Alexey A.
  organization: Physics Department, University of Massachusetts Boston, Boston, MA, USA
– sequence: 5
  givenname: Branislav M.
  surname: Notaroš
  fullname: Notaroš, Branislav M.
  email: notaros@colostate.edu, notaros@colostate.edu
  organization: Department of Electrical and Computer Engineering, Colorado State University, CO, Fort Collins, USA
BookMark eNo9kFtPwkAQhTcGEwF98g9s4qMp7m6v-yhEEAOSIF7eNtN2CgulhW0b5N-7gvFpTibnm5M5HdIqygIJueWsxxkTD8nW9OKe4K4ILkib-75wfOZ9tf61y69Ip6rW1hzJgLXJ5q2J15jUTl5CiindN5AanekcDF1hrhPIHShqLAqg8yFNSp3Tg65XdKWXK9rn9zTTmKe0KXRWmq2ujxSKlFp8iXQ4-6B2S11nQafz8TW5zCCv8OZvdsn78GkxeHYms9F48DhxNA9l4HDP82KZCcxCP0aQMkglQxARgo8RsAQYF8JPfGARiyK0jOQ88gDjNE7t811yd767M-W-wapW67IxhY1U1uaFoXQ9aV3i7DroHI9qZ_QWzFFxpn6rVLZKFatTlWownfdPykLOGdJVjd__EJiNCkI39NXn68iGTNjkZdhXgfsD_ht4rw
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright © 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
– notice: Copyright © 2016 Wiley Periodicals, Inc.
DBID BSCLL
7TB
7U5
8FD
FR3
L7M
DOI 10.1002/cmr.b.21326
DatabaseName Istex
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1552-504X
EndPage 117
ExternalDocumentID 4265910401
CMRB21326
ark_67375_WNG_18L0LJFB_6
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: ECCS‐1307863
– fundername: Serbian Ministry of Education, Science, and Technological Development
  funderid: TR‐32005
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
4.4
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5VS
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AAZKR
ABCQN
ABEML
ABIJN
ACBWZ
ACCFJ
ACGFS
ACIWK
ACMXC
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADZOD
AEEZP
AEIMD
AEQDE
AEUQT
AFBPY
AFFNX
AFPWT
AFZJQ
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BRXPI
BSCLL
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
GROUPED_DOAJ
H.X
HBH
HF~
HHZ
HVGLF
HZ~
IAO
ICD
ITC
IX1
J0M
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
MK4
MSFUL
MSMAN
MSSTM
N04
N05
NF~
O66
O9-
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
RHX
ROL
RWI
RYL
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WJL
WOHZO
WQJ
WRC
WVDHM
WXI
XG1
XHW
XV2
ZCG
ZZTAW
~WT
AANHP
ACCMX
ACRPL
ACYXJ
ADNMO
7TB
7U5
8FD
AEUCX
AGQPQ
FR3
L7M
ID FETCH-LOGICAL-i1796-1444b9f2ef75bea996d90ea28ea5e8a0ca01225c5a08088e79691184aebdbd213
IEDL.DBID DR2
ISSN 1552-5031
IngestDate Fri Jul 25 12:07:57 EDT 2025
Wed Jan 22 16:56:24 EST 2025
Wed Oct 30 09:51:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1796-1444b9f2ef75bea996d90ea28ea5e8a0ca01225c5a08088e79691184aebdbd213
Notes Serbian Ministry of Education, Science, and Technological Development - No. TR-32005
National Science Foundation - No. ECCS-1307863
istex:7199B0E412C9BD23A79E93191B2DE4D3E5278970
ArticleID:CMRB21326
ark:/67375/WNG-18L0LJFB-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1844779349
PQPubID 2030032
PageCount 12
ParticipantIDs proquest_journals_1844779349
wiley_primary_10_1002_cmr_b_21326_CMRB21326
istex_primary_ark_67375_WNG_18L0LJFB_6
PublicationCentury 2000
PublicationDate 2016-07
July 2016
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concepts in magnetic resonance. Part B, Magnetic resonance engineering
PublicationTitleAlternate Concepts Magn Reson
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Brown R, Lakshmanan K, Madelin G, Alon L, Chang G, Sodickson DK, et al. "A flexible nested sodium and proton coil array with wideband matching for Knee cartilage MRI at 3T". Magn Reson Med. 2015. doi: 10.1002/mrm.26017.
Guérin B, Gebhardt M, Serano P, Adalsteinsson E, Hamm M, Pfeuffer J, et al. Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficient metrics. Magn Reson Med. 2015;73:1137-1150.
Notaros BM. Higher order frequency-domain computational electromagnetics. Invited review paper, Special Issue on Large and Multiscale Computational Electromagnetics. IEEE Trans Antennas Propagat. 2008;56:2251-2276.
Callaghan PT. Principles of Nuclear Magnetic Resonance Microscopy. New York: Oxford University Press; 1993.
Uğurbil K. Magnetic resonance imaging at ultrahigh fields. IEEE Trans Biomed Eng. 2014;61:1364-1379.
Andreychenko A, Bluemink JJ, Raaijmakers AJ, Lagendijk JJ, Luijten PR, van den Berg CA. Improved RF performance of travelling wave MR with a high permittivity dielectric lining of the bore. Magn Reson Med. 2013;70:885-894.
Alsop DC, Connick TJ, Mizsei G. A spiral volume coil for improved RF field homogeneity at high static magnetic field strength. Magn Reson Med. 1998;40:49-54.
Zhang B, Sodickson DK, Lattanzi R, Duan Q, Stoeckel B, Wiggins GC. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms. Magn Reson Med. 2012;67:1183-1193.
Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, et al. Efficient high-frequency body coil for high-field MRI. Magn Reson Med. 2004;52:851-859.
Notaros BM. Electromagnetics. New Jersey: PEARSON Prentice Hall; 2010.
Andreychenko A, Kroeze H, Boer VO, Lagendijk JJ, Luijten PR, van den Berg CA. Improved steering of the RF field of traveling wave MR with a multimode, coaxial waveguide. Magn Reson Med. 2014;71:1641-1649.
Ohliger MA, Sodickson DK. An introduction to coil array design for parallel MRI. NMR Biomed. 2006;19:300-315.
Van den Berg CA, Van den Bergen B, Van de Kamer JB, Raaymakers BW, Kroeze H, Bartels LW, et al. Simultaneous B+ homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med. 2007;57:577-586.
Alecci M, Collins CM, Smith MB, Jezzard P. Radio frequency magnetic field mapping of a 3 T birdcage coil: experimental and theoretical dependence on sample properties. Magn Reson Med. 2001;46:379-385.
Eustace SJ, Nelson E. Whole body magnetic resonance imaging; a valuable adjunct to clinical examination. BMJ : British Medical Journal. 2004;328(7453):1387-1388.
Liang ZP, Lauterbur PC. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. New York: IEEE Press; 2000.
Mallow J, Herrmann T, Kim KN, Stadler J, Mylius J, Brosch M, et al. Ultra-high field MRI for primate imaging using the travelling-wave concept. Magn Reson Mater Phy. 2012;26:389-400.
Yang QX, Rupprecht S, Luo W, Sica C, Herse Z, Wang J, et al. Radiofrequency field enhancement with high dielectric constant (HDC) pads in a receive array coil at 3.0 T. J Magn Reson Imag. 2013;38:435-440.
Alecci M, Collins CM, Wilson J, Liu W, Smith MB, Jezzard P. Theoretical and experimental evaluation of detached endcaps for 3 T birdcage coils. Magn Reson Med. 2003;49:363-370.
Brunner DO, Paška J, Froehlich J, Pruessmann KP. Traveling-wave RF shimming and parallel MRI. Magn Reson Med. 2011;66:290-300.
Hoffmann J, Shajan G, Budde J, Scheffler K, Pohmann R. Human brain imaging at 9.4 T using a tunable patch anetnna for transmission. Magn Reson Med. 2013;69:1494-1500.
Brink WM, Versluis MJ, Peeters JM, Börnert P, Webb AG. "Passive radiofrequency shimming in the thigh at 3 Tesla using high permittivity material and body coil receive uniformity correction". Magn Reson Med. 2015. doi: 10.1002/mrm.26070.
Andreychenko A, Kroeze H, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA. Coaxial waveguide for travelling wave MRI at ultrahigh fields. Magn Reson Med. 2013;70:875-884.
Djordjevic M, Notaros BM. Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers. IEEE Trans Antennas Propagat. 2004;52:2118-2129.
Vazquez F, Martin R, Marrufo O, Rodriguez AO. "Travelling wave magnetic resonance imaging at 3T". J Appl Phys [Online]. 2013;114:064906. Available: http://dx.doi.org/10.1063/1.4817972.
Hoult DI, Lauterbur PC. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson. 1979;34:425-433.
Pohmann R, Speck O, Scheffler K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3,4, and 9.4 Tesla using current receive coil arrays. Magn Reson Med. 2015;75:801-809.
Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M. An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson. 1985;63:622-628.
1979; 34
2013; 69
2010
2015; 73
2015; 75
2009
2008; 56
2013; 70
2006
2006; 19
1993
1985; 63
1998; 40
2004; 328
2014; 61
2001; 46
2007; 57
2004; 52
2013; 38
2000
2013; 114
2011; 66
2003; 49
2016
2015
2014
2013
2012; 26
2012; 67
2014; 71
References_xml – reference: Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M. An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson. 1985;63:622-628.
– reference: Guérin B, Gebhardt M, Serano P, Adalsteinsson E, Hamm M, Pfeuffer J, et al. Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficient metrics. Magn Reson Med. 2015;73:1137-1150.
– reference: Yang QX, Rupprecht S, Luo W, Sica C, Herse Z, Wang J, et al. Radiofrequency field enhancement with high dielectric constant (HDC) pads in a receive array coil at 3.0 T. J Magn Reson Imag. 2013;38:435-440.
– reference: Mallow J, Herrmann T, Kim KN, Stadler J, Mylius J, Brosch M, et al. Ultra-high field MRI for primate imaging using the travelling-wave concept. Magn Reson Mater Phy. 2012;26:389-400.
– reference: Eustace SJ, Nelson E. Whole body magnetic resonance imaging; a valuable adjunct to clinical examination. BMJ : British Medical Journal. 2004;328(7453):1387-1388.
– reference: Uğurbil K. Magnetic resonance imaging at ultrahigh fields. IEEE Trans Biomed Eng. 2014;61:1364-1379.
– reference: Alecci M, Collins CM, Smith MB, Jezzard P. Radio frequency magnetic field mapping of a 3 T birdcage coil: experimental and theoretical dependence on sample properties. Magn Reson Med. 2001;46:379-385.
– reference: Notaros BM. Higher order frequency-domain computational electromagnetics. Invited review paper, Special Issue on Large and Multiscale Computational Electromagnetics. IEEE Trans Antennas Propagat. 2008;56:2251-2276.
– reference: Brink WM, Versluis MJ, Peeters JM, Börnert P, Webb AG. "Passive radiofrequency shimming in the thigh at 3 Tesla using high permittivity material and body coil receive uniformity correction". Magn Reson Med. 2015. doi: 10.1002/mrm.26070.
– reference: Zhang B, Sodickson DK, Lattanzi R, Duan Q, Stoeckel B, Wiggins GC. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms. Magn Reson Med. 2012;67:1183-1193.
– reference: Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, et al. Efficient high-frequency body coil for high-field MRI. Magn Reson Med. 2004;52:851-859.
– reference: Ohliger MA, Sodickson DK. An introduction to coil array design for parallel MRI. NMR Biomed. 2006;19:300-315.
– reference: Alecci M, Collins CM, Wilson J, Liu W, Smith MB, Jezzard P. Theoretical and experimental evaluation of detached endcaps for 3 T birdcage coils. Magn Reson Med. 2003;49:363-370.
– reference: Alsop DC, Connick TJ, Mizsei G. A spiral volume coil for improved RF field homogeneity at high static magnetic field strength. Magn Reson Med. 1998;40:49-54.
– reference: Andreychenko A, Kroeze H, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA. Coaxial waveguide for travelling wave MRI at ultrahigh fields. Magn Reson Med. 2013;70:875-884.
– reference: Liang ZP, Lauterbur PC. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. New York: IEEE Press; 2000.
– reference: Hoult DI, Lauterbur PC. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson. 1979;34:425-433.
– reference: Callaghan PT. Principles of Nuclear Magnetic Resonance Microscopy. New York: Oxford University Press; 1993.
– reference: Djordjevic M, Notaros BM. Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers. IEEE Trans Antennas Propagat. 2004;52:2118-2129.
– reference: Vazquez F, Martin R, Marrufo O, Rodriguez AO. "Travelling wave magnetic resonance imaging at 3T". J Appl Phys [Online]. 2013;114:064906. Available: http://dx.doi.org/10.1063/1.4817972.
– reference: Notaros BM. Electromagnetics. New Jersey: PEARSON Prentice Hall; 2010.
– reference: Van den Berg CA, Van den Bergen B, Van de Kamer JB, Raaymakers BW, Kroeze H, Bartels LW, et al. Simultaneous B+ homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med. 2007;57:577-586.
– reference: Brunner DO, Paška J, Froehlich J, Pruessmann KP. Traveling-wave RF shimming and parallel MRI. Magn Reson Med. 2011;66:290-300.
– reference: Pohmann R, Speck O, Scheffler K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3,4, and 9.4 Tesla using current receive coil arrays. Magn Reson Med. 2015;75:801-809.
– reference: Andreychenko A, Bluemink JJ, Raaijmakers AJ, Lagendijk JJ, Luijten PR, van den Berg CA. Improved RF performance of travelling wave MR with a high permittivity dielectric lining of the bore. Magn Reson Med. 2013;70:885-894.
– reference: Andreychenko A, Kroeze H, Boer VO, Lagendijk JJ, Luijten PR, van den Berg CA. Improved steering of the RF field of traveling wave MR with a multimode, coaxial waveguide. Magn Reson Med. 2014;71:1641-1649.
– reference: Brown R, Lakshmanan K, Madelin G, Alon L, Chang G, Sodickson DK, et al. "A flexible nested sodium and proton coil array with wideband matching for Knee cartilage MRI at 3T". Magn Reson Med. 2015. doi: 10.1002/mrm.26017.
– reference: Hoffmann J, Shajan G, Budde J, Scheffler K, Pohmann R. Human brain imaging at 9.4 T using a tunable patch anetnna for transmission. Magn Reson Med. 2013;69:1494-1500.
– volume: 71
  start-page: 1641
  year: 2014
  end-page: 1649
  article-title: Improved steering of the RF field of traveling wave MR with a multimode, coaxial waveguide
  publication-title: Magn Reson Med
– volume: 75
  start-page: 801
  year: 2015
  end-page: 809
  article-title: Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3,4, and 9.4 Tesla using current receive coil arrays
  publication-title: Magn Reson Med
– volume: 49
  start-page: 363
  year: 2003
  end-page: 370
  article-title: Theoretical and experimental evaluation of detached endcaps for 3 T birdcage coils
  publication-title: Magn Reson Med
– volume: 40
  start-page: 49
  year: 1998
  end-page: 54
  article-title: A spiral volume coil for improved RF field homogeneity at high static magnetic field strength
  publication-title: Magn Reson Med
– volume: 70
  start-page: 875
  year: 2013
  end-page: 884
  article-title: Coaxial waveguide for travelling wave MRI at ultrahigh fields
  publication-title: Magn Reson Med
– volume: 19
  start-page: 300
  year: 2006
  end-page: 315
  article-title: An introduction to coil array design for parallel MRI
  publication-title: NMR Biomed
– volume: 52
  start-page: 2118
  year: 2004
  end-page: 2129
  article-title: Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers
  publication-title: IEEE Trans Antennas Propagat
– volume: 70
  start-page: 885
  year: 2013
  end-page: 894
  article-title: Improved RF performance of travelling wave MR with a high permittivity dielectric lining of the bore
  publication-title: Magn Reson Med
– year: 2015
  article-title: “Passive radiofrequency shimming in the thigh at 3 Tesla using high permittivity material and body coil receive uniformity correction”
  publication-title: Magn Reson Med
– start-page: 4746
  year: 2009
– start-page: 1825
  year: 2015
– year: 2000
– start-page: 2746
  year: 2013
– volume: 67
  start-page: 1183
  year: 2012
  end-page: 1193
  article-title: Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms
  publication-title: Magn Reson Med
– volume: 52
  start-page: 851
  year: 2004
  end-page: 859
  article-title: Efficient high‐frequency body coil for high‐field MRI
  publication-title: Magn Reson Med
– start-page: 971
  year: 2015
  end-page: 972
– start-page: 2127
  year: 2016
– volume: 73
  start-page: 1137
  year: 2015
  end-page: 1150
  article-title: Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficient metrics
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1494
  year: 2013
  end-page: 1500
  article-title: Human brain imaging at 9.4 T using a tunable patch anetnna for transmission
  publication-title: Magn Reson Med
– year: 2014
– volume: 38
  start-page: 435
  year: 2013
  end-page: 440
  article-title: Radiofrequency field enhancement with high dielectric constant (HDC) pads in a receive array coil at 3.0 T
  publication-title: J Magn Reson Imag
– year: 2010
– start-page: 4883
  year: 2013
– start-page: 107
  year: 2006
  end-page: 115
– volume: 56
  start-page: 2251
  year: 2008
  end-page: 2276
  article-title: Higher order frequency‐domain computational electromagnetics. Invited review paper, Special Issue on Large and Multiscale Computational Electromagnetics
  publication-title: IEEE Trans Antennas Propagat
– volume: 66
  start-page: 290
  year: 2011
  end-page: 300
  article-title: Traveling‐wave RF shimming and parallel MRI
  publication-title: Magn Reson Med
– volume: 57
  start-page: 577
  year: 2007
  end-page: 586
  article-title: Simultaneous B+ homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil
  publication-title: Magn Reson Med
– volume: 46
  start-page: 379
  year: 2001
  end-page: 385
  article-title: Radio frequency magnetic field mapping of a 3 T birdcage coil: experimental and theoretical dependence on sample properties
  publication-title: Magn Reson Med
– year: 2015
  article-title: “A flexible nested sodium and proton coil array with wideband matching for Knee cartilage MRI at 3T”
  publication-title: Magn Reson Med
– volume: 34
  start-page: 425
  year: 1979
  end-page: 433
  article-title: The sensitivity of the zeugmatographic experiment involving human samples
  publication-title: J Magn Reson
– start-page: 1346
  year: 2015
  end-page: 1347
– volume: 63
  start-page: 622
  year: 1985
  end-page: 628
  article-title: An efficient, highly homogeneous radiofrequency coil for whole‐body NMR imaging at 1.5 T
  publication-title: J Magn Reson
– volume: 61
  start-page: 1364
  year: 2014
  end-page: 1379
  article-title: Magnetic resonance imaging at ultrahigh fields
  publication-title: IEEE Trans Biomed Eng
– volume: 328
  start-page: 1387
  issue: 7453
  year: 2004
  end-page: 1388
  article-title: Whole body magnetic resonance imaging; a valuable adjunct to clinical examination
  publication-title: BMJ : British Medical Journal
– year: 1993
– volume: 114
  start-page: 064906
  year: 2013
  article-title: “Travelling wave magnetic resonance imaging at 3T”
  publication-title: J Appl Phys [Online]
– volume: 26
  start-page: 389
  year: 2012
  end-page: 400
  article-title: Ultra‐high field MRI for primate imaging using the travelling‐wave concept
  publication-title: Magn Reson Mater Phy
– year: 2015
– year: 2013
SSID ssj0028960
Score 2.0539746
Snippet A novel method for excitation of RF B1 field in high‐field (3‐T) magnetic resonance imaging (MRI) systems using a subject‐loaded quadrifilar helical antenna as...
A novel method for excitation of RF B1 field in high-field (3-T) magnetic resonance imaging (MRI) systems using a subject-loaded quadrifilar helical antenna as...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 106
SubjectTerms B1+ field uniformity
high-field 3-T MRI systems
magnetic resonance imaging (MRI)
quadrifilar helical-antenna coil
RF body coils
Title Subject-loaded quadrifilar helical-antenna RF coil with high B1+ field uniformity and large FOV for 3-T MRI
URI https://api.istex.fr/ark:/67375/WNG-18L0LJFB-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmr.b.21326
https://www.proquest.com/docview/1844779349
Volume 46B
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQUiUubXlU3RYqHyouKEs22IlzZFEDRSxIK2i5WWN7LFYs2bIPCfXUn9Df2F_SsZMutLdyi-LYUjIPfzOZ-czYRzS-yPAAkgxKmQjvTGKEKBIre-DLwmEvNoUNzvOTK3F6La_b2pzQC9PwQywTbsEyor8OBg5mtv9IGmrvpl3TzSiaCoTboVorQKLhkjyKIommR1hKCrdId9vuPBrZfzKXQGn4ng9_IcynODVuNNWr5jTVWeQnDPUlt93F3HTt93_YG5_9Dq_ZyxaC8sNGZ9bZCtYb7EUsBbWzTXZPviQkZ379-DmegEPH7xfgpiM_oiCY32DI8o1pMIikroEPK24nozEPGV0e2I95v7fHY2UcX9Sh8euOkD6H2vFxKDvn1cUXTnf5AS1yyQfDz1vsqvp0eXSStAczJCOy3zyhIEyY0mfoC2kQKGRyZYqQKQSJClIL4YedtBIIjyqFNId8qhKAxhlHr_uGrdaTGt8ynqP0ubKSNlMlMrSQW5UCOA8FiiL1HbYbxaO_NeQbGqa3oRatkPrr-bHuqbP07LTq67zDtv_IT7dmOKNh0jvyQKLssL0oiOU6DV1zpkkE2ugoAn00GPbj1bv_evo9WyMYlTdFvNtsdT5d4A5Blbn5EDXyN9p_5nU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgCMEL_xEdA_yAeJnSpZmdOI90InSjLVLVwd6ss30W1bp061oJ8cRH4DPySTg7WRm8wVuUi60498e_u9ydGXuNxhcZ7kOSQSkT4Z1JjBBFYmUPfFk47MWisNE4HxyLoxN50gbcQi1M0x9iE3ALmhHtdVDwEJDe-9011J4tu6abkTuV32S3wpne0aWabNpHkS_RVAlLSQ4XSW9bn0eUvWuDCZaGL_r1D4x5HanGraa6z_TVSzYZJqfd9cp07be_-jf-_yoesHstCuVvG7F5yG5g_Yjdjtmg9vIxuyBzEuIzP7__mC_AoeMXa3DLmZ-RH8y_YAj0zYkYuFLXwCcVt4vZnIegLg8NkHm_t8tjchxf16H264zAPofa8XnIPOfVx0-c7vJ9mmTKR5PDJ-y4ejc9GCTt2QzJjFQ4T8gPE6b0GfpCGgTymlyZImQKQaKC1EL4ZyetBIKkSiGNIbOqBKBxxtFyn7KtelHjM8ZzlD5XVtJ-qkSGFnKrUgDnoUBRpL7D3kT-6POm_4aG5WlIRyuk_jx-r3tqmA6Pqr7OO2znioG61cRLIpPokRESZYftRk5s5mk6NmeaWKCNjizQB6NJP15t_9PTr9idwXQ01MPD8Yfn7C6hqrzJ6d1hW6vlGl8QclmZl1E8fwE-BuqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMSFd8VCAR8QlyrbbGonzpFtCW3ZXdCqhd6ssT0Wq26z7T4kxImfwG_klzB2wlK4wS2KY0vJPPzNZOYzYy_R-CLDXUgyKGUivDOJEaJIrOyBLwuHvdgUNhzlByfi6FSetrU5oRem4YdYJ9yCZUR_HQz8wvmd36Sh9nzeNd2Moqn8Orsh8lQFpd4fr9mjKJRomoSlpHiLlLdtz6ORnSuTCZWGD_rlD4h5FajGnaa62xynuogEhaHA5Ky7Wpqu_foXfeN_v8Q9dqfFoPx1ozT32TWsH7CbsRbULh6yS3ImITvz49v36QwcOn65Ajef-AlFwfwzhjTflAaDTOoa-LjidjaZ8pDS5YH-mPd72zyWxvFVHTq_zgnqc6gdn4a6c169_8jpLt-lRY75cHz4iJ1Ub473DpL2ZIZkQgacJxSFCVP6DH0hDQLFTK5METKFIFFBaiH8sZNWAgFSpZDmkFNVAtA44-h1N9lGPavxMeM5Sp8rK2k3VSJDC7lVKYDzUKAoUt9hr6J49EXDvqFhfhaK0QqpP43e6p4apIOjqq_zDtv6JT_d2uGChknxyAWJssO2oyDW6zR8zZkmEWijowj03nDcj1dP_unpF-zWh_1KDw5H756y2wSp8qagd4ttLOcrfEawZWmeR-X8CbHf6Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-loaded+quadrifilar+helical-antenna+RF+coil+with+high+B1%2B+field+uniformity+and+large+FOV+for+3-T+MRI&rft.jtitle=Concepts+in+magnetic+resonance.+Part+B%2C+Magnetic+resonance+engineering&rft.au=Athalye%2C+Pranav+S&rft.au=Sekeljic%2C+Nada+J&rft.au=Ilic%2C+Milan+M&rft.au=Tonyushkin%2C+Alexey+A&rft.date=2016-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1552-5031&rft.eissn=1552-504X&rft.volume=46B&rft.issue=3&rft.spage=106&rft_id=info:doi/10.1002%2Fcmr.b.21326&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4265910401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5031&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5031&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5031&client=summon