Subject-loaded quadrifilar helical-antenna RF coil with high B1+ field uniformity and large FOV for 3-T MRI
A novel method for excitation of RF B1 field in high‐field (3‐T) magnetic resonance imaging (MRI) systems using a subject‐loaded quadrifilar helical antenna as an RF coil is proposed, evaluated, and demonstrated. Design, analysis, characterization, and evaluation of the novel coil when situated in a...
Saved in:
Published in | Concepts in magnetic resonance. Part B, Magnetic resonance engineering Vol. 46B; no. 3; pp. 106 - 117 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Blackwell Publishing Ltd
01.07.2016
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel method for excitation of RF B1 field in high‐field (3‐T) magnetic resonance imaging (MRI) systems using a subject‐loaded quadrifilar helical antenna as an RF coil is proposed, evaluated, and demonstrated. Design, analysis, characterization, and evaluation of the novel coil when situated in a 3‐T MRI bore and loaded with different phantoms are performed and cross‐validated by extensive numerical simulations using multiple computational electromagnetics techniques. The results for the quadrifilar helical‐antenna RF body coil show (a) strong field penetration in the entire phantoms; (b) excellent right‐hand circular polarization (RCP); (c) high spatial uniformity of RCP RF magnetic field, B1+, throughout the phantoms; (d) large field of view (FOV); (e) good transmit efficiency; and (f) low local specific absorption rate (SAR). The examples show that the new RF coil provides substantially better B1+‐field uniformity and much larger FOV than any of the previously reported numerical and experimental results for the existing RF coil designs at 3 T in literature that enable comparison. In addition, helical RF body coils of different lengths can, for instance, easily provide an excellent RCP and highly uniform B1+‐field within the MRI maximum FOV length of 50 cm, and even 100 cm. The proposed MRI RF coil yields a remarkable improvement in the field uniformity in the longitudinal direction, for various phantoms, with comparable efficiency and SAR levels. |
---|---|
AbstractList | A novel method for excitation of RF B1 field in high-field (3-T) magnetic resonance imaging (MRI) systems using a subject-loaded quadrifilar helical antenna as an RF coil is proposed, evaluated, and demonstrated. Design, analysis, characterization, and evaluation of the novel coil when situated in a 3-T MRI bore and loaded with different phantoms are performed and cross-validated by extensive numerical simulations using multiple computational electromagnetics techniques. The results for the quadrifilar helical-antenna RF body coil show (a) strong field penetration in the entire phantoms; (b) excellent right-hand circular polarization (RCP); (c) high spatial uniformity of RCP RF magnetic field, B1+, throughout the phantoms; (d) large field of view (FOV); (e) good transmit efficiency; and (f) low local specific absorption rate (SAR). The examples show that the new RF coil provides substantially better B1+-field uniformity and much larger FOV than any of the previously reported numerical and experimental results for the existing RF coil designs at 3 T in literature that enable comparison. In addition, helical RF body coils of different lengths can, for instance, easily provide an excellent RCP and highly uniform B1+-field within the MRI maximum FOV length of 50 cm, and even 100 cm. The proposed MRI RF coil yields a remarkable improvement in the field uniformity in the longitudinal direction, for various phantoms, with comparable efficiency and SAR levels. A novel method for excitation of RF B1 field in high‐field (3‐T) magnetic resonance imaging (MRI) systems using a subject‐loaded quadrifilar helical antenna as an RF coil is proposed, evaluated, and demonstrated. Design, analysis, characterization, and evaluation of the novel coil when situated in a 3‐T MRI bore and loaded with different phantoms are performed and cross‐validated by extensive numerical simulations using multiple computational electromagnetics techniques. The results for the quadrifilar helical‐antenna RF body coil show (a) strong field penetration in the entire phantoms; (b) excellent right‐hand circular polarization (RCP); (c) high spatial uniformity of RCP RF magnetic field, B1+, throughout the phantoms; (d) large field of view (FOV); (e) good transmit efficiency; and (f) low local specific absorption rate (SAR). The examples show that the new RF coil provides substantially better B1+‐field uniformity and much larger FOV than any of the previously reported numerical and experimental results for the existing RF coil designs at 3 T in literature that enable comparison. In addition, helical RF body coils of different lengths can, for instance, easily provide an excellent RCP and highly uniform B1+‐field within the MRI maximum FOV length of 50 cm, and even 100 cm. The proposed MRI RF coil yields a remarkable improvement in the field uniformity in the longitudinal direction, for various phantoms, with comparable efficiency and SAR levels. |
Author | Šekeljić, Nada J. Ilić, Milan M. Notaroš, Branislav M. Tonyushkin, Alexey A. Athalye, Pranav S. |
Author_xml | – sequence: 1 givenname: Pranav S. surname: Athalye fullname: Athalye, Pranav S. organization: Department of Electrical and Computer Engineering, Colorado State University, CO, Fort Collins, USA – sequence: 2 givenname: Nada J. surname: Šekeljić fullname: Šekeljić, Nada J. organization: Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA – sequence: 3 givenname: Milan M. surname: Ilić fullname: Ilić, Milan M. organization: Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA – sequence: 4 givenname: Alexey A. surname: Tonyushkin fullname: Tonyushkin, Alexey A. organization: Physics Department, University of Massachusetts Boston, Boston, MA, USA – sequence: 5 givenname: Branislav M. surname: Notaroš fullname: Notaroš, Branislav M. email: notaros@colostate.edu, notaros@colostate.edu organization: Department of Electrical and Computer Engineering, Colorado State University, CO, Fort Collins, USA |
BookMark | eNo9kFtPwkAQhTcGEwF98g9s4qMp7m6v-yhEEAOSIF7eNtN2CgulhW0b5N-7gvFpTibnm5M5HdIqygIJueWsxxkTD8nW9OKe4K4ILkib-75wfOZ9tf61y69Ip6rW1hzJgLXJ5q2J15jUTl5CiindN5AanekcDF1hrhPIHShqLAqg8yFNSp3Tg65XdKWXK9rn9zTTmKe0KXRWmq2ujxSKlFp8iXQ4-6B2S11nQafz8TW5zCCv8OZvdsn78GkxeHYms9F48DhxNA9l4HDP82KZCcxCP0aQMkglQxARgo8RsAQYF8JPfGARiyK0jOQ88gDjNE7t811yd767M-W-wapW67IxhY1U1uaFoXQ9aV3i7DroHI9qZ_QWzFFxpn6rVLZKFatTlWownfdPykLOGdJVjd__EJiNCkI39NXn68iGTNjkZdhXgfsD_ht4rw |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. Copyright © 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. – notice: Copyright © 2016 Wiley Periodicals, Inc. |
DBID | BSCLL 7TB 7U5 8FD FR3 L7M |
DOI | 10.1002/cmr.b.21326 |
DatabaseName | Istex Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1552-504X |
EndPage | 117 |
ExternalDocumentID | 4265910401 CMRB21326 ark_67375_WNG_18L0LJFB_6 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: ECCS‐1307863 – fundername: Serbian Ministry of Education, Science, and Technological Development funderid: TR‐32005 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 4.4 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5VS 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAJEY AAONW AAZKR ABCQN ABEML ABIJN ACBWZ ACCFJ ACGFS ACIWK ACMXC ACSCC ACXQS ADBBV ADEOM ADIZJ ADZOD AEEZP AEIMD AEQDE AEUQT AFBPY AFFNX AFPWT AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS AMBMR ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BRXPI BSCLL BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 EBS EJD F00 F01 F04 F5P FEDTE G-S GNP GODZA GROUPED_DOAJ H.X HBH HF~ HHZ HVGLF HZ~ IAO ICD ITC IX1 J0M KQQ LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 MK4 MSFUL MSMAN MSSTM N04 N05 NF~ O66 O9- OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 RHX ROL RWI RYL SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WJL WOHZO WQJ WRC WVDHM WXI XG1 XHW XV2 ZCG ZZTAW ~WT AANHP ACCMX ACRPL ACYXJ ADNMO 7TB 7U5 8FD AEUCX AGQPQ FR3 L7M |
ID | FETCH-LOGICAL-i1796-1444b9f2ef75bea996d90ea28ea5e8a0ca01225c5a08088e79691184aebdbd213 |
IEDL.DBID | DR2 |
ISSN | 1552-5031 |
IngestDate | Fri Jul 25 12:07:57 EDT 2025 Wed Jan 22 16:56:24 EST 2025 Wed Oct 30 09:51:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i1796-1444b9f2ef75bea996d90ea28ea5e8a0ca01225c5a08088e79691184aebdbd213 |
Notes | Serbian Ministry of Education, Science, and Technological Development - No. TR-32005 National Science Foundation - No. ECCS-1307863 istex:7199B0E412C9BD23A79E93191B2DE4D3E5278970 ArticleID:CMRB21326 ark:/67375/WNG-18L0LJFB-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1844779349 |
PQPubID | 2030032 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1844779349 wiley_primary_10_1002_cmr_b_21326_CMRB21326 istex_primary_ark_67375_WNG_18L0LJFB_6 |
PublicationCentury | 2000 |
PublicationDate | 2016-07 July 2016 20160701 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Concepts in magnetic resonance. Part B, Magnetic resonance engineering |
PublicationTitleAlternate | Concepts Magn Reson |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Brown R, Lakshmanan K, Madelin G, Alon L, Chang G, Sodickson DK, et al. "A flexible nested sodium and proton coil array with wideband matching for Knee cartilage MRI at 3T". Magn Reson Med. 2015. doi: 10.1002/mrm.26017. Guérin B, Gebhardt M, Serano P, Adalsteinsson E, Hamm M, Pfeuffer J, et al. Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficient metrics. Magn Reson Med. 2015;73:1137-1150. Notaros BM. Higher order frequency-domain computational electromagnetics. Invited review paper, Special Issue on Large and Multiscale Computational Electromagnetics. IEEE Trans Antennas Propagat. 2008;56:2251-2276. Callaghan PT. Principles of Nuclear Magnetic Resonance Microscopy. New York: Oxford University Press; 1993. Uğurbil K. Magnetic resonance imaging at ultrahigh fields. IEEE Trans Biomed Eng. 2014;61:1364-1379. Andreychenko A, Bluemink JJ, Raaijmakers AJ, Lagendijk JJ, Luijten PR, van den Berg CA. Improved RF performance of travelling wave MR with a high permittivity dielectric lining of the bore. Magn Reson Med. 2013;70:885-894. Alsop DC, Connick TJ, Mizsei G. A spiral volume coil for improved RF field homogeneity at high static magnetic field strength. Magn Reson Med. 1998;40:49-54. Zhang B, Sodickson DK, Lattanzi R, Duan Q, Stoeckel B, Wiggins GC. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms. Magn Reson Med. 2012;67:1183-1193. Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, et al. Efficient high-frequency body coil for high-field MRI. Magn Reson Med. 2004;52:851-859. Notaros BM. Electromagnetics. New Jersey: PEARSON Prentice Hall; 2010. Andreychenko A, Kroeze H, Boer VO, Lagendijk JJ, Luijten PR, van den Berg CA. Improved steering of the RF field of traveling wave MR with a multimode, coaxial waveguide. Magn Reson Med. 2014;71:1641-1649. Ohliger MA, Sodickson DK. An introduction to coil array design for parallel MRI. NMR Biomed. 2006;19:300-315. Van den Berg CA, Van den Bergen B, Van de Kamer JB, Raaymakers BW, Kroeze H, Bartels LW, et al. Simultaneous B+ homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med. 2007;57:577-586. Alecci M, Collins CM, Smith MB, Jezzard P. Radio frequency magnetic field mapping of a 3 T birdcage coil: experimental and theoretical dependence on sample properties. Magn Reson Med. 2001;46:379-385. Eustace SJ, Nelson E. Whole body magnetic resonance imaging; a valuable adjunct to clinical examination. BMJ : British Medical Journal. 2004;328(7453):1387-1388. Liang ZP, Lauterbur PC. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. New York: IEEE Press; 2000. Mallow J, Herrmann T, Kim KN, Stadler J, Mylius J, Brosch M, et al. Ultra-high field MRI for primate imaging using the travelling-wave concept. Magn Reson Mater Phy. 2012;26:389-400. Yang QX, Rupprecht S, Luo W, Sica C, Herse Z, Wang J, et al. Radiofrequency field enhancement with high dielectric constant (HDC) pads in a receive array coil at 3.0 T. J Magn Reson Imag. 2013;38:435-440. Alecci M, Collins CM, Wilson J, Liu W, Smith MB, Jezzard P. Theoretical and experimental evaluation of detached endcaps for 3 T birdcage coils. Magn Reson Med. 2003;49:363-370. Brunner DO, Paška J, Froehlich J, Pruessmann KP. Traveling-wave RF shimming and parallel MRI. Magn Reson Med. 2011;66:290-300. Hoffmann J, Shajan G, Budde J, Scheffler K, Pohmann R. Human brain imaging at 9.4 T using a tunable patch anetnna for transmission. Magn Reson Med. 2013;69:1494-1500. Brink WM, Versluis MJ, Peeters JM, Börnert P, Webb AG. "Passive radiofrequency shimming in the thigh at 3 Tesla using high permittivity material and body coil receive uniformity correction". Magn Reson Med. 2015. doi: 10.1002/mrm.26070. Andreychenko A, Kroeze H, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA. Coaxial waveguide for travelling wave MRI at ultrahigh fields. Magn Reson Med. 2013;70:875-884. Djordjevic M, Notaros BM. Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers. IEEE Trans Antennas Propagat. 2004;52:2118-2129. Vazquez F, Martin R, Marrufo O, Rodriguez AO. "Travelling wave magnetic resonance imaging at 3T". J Appl Phys [Online]. 2013;114:064906. Available: http://dx.doi.org/10.1063/1.4817972. Hoult DI, Lauterbur PC. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson. 1979;34:425-433. Pohmann R, Speck O, Scheffler K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3,4, and 9.4 Tesla using current receive coil arrays. Magn Reson Med. 2015;75:801-809. Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M. An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson. 1985;63:622-628. 1979; 34 2013; 69 2010 2015; 73 2015; 75 2009 2008; 56 2013; 70 2006 2006; 19 1993 1985; 63 1998; 40 2004; 328 2014; 61 2001; 46 2007; 57 2004; 52 2013; 38 2000 2013; 114 2011; 66 2003; 49 2016 2015 2014 2013 2012; 26 2012; 67 2014; 71 |
References_xml | – reference: Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M. An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson. 1985;63:622-628. – reference: Guérin B, Gebhardt M, Serano P, Adalsteinsson E, Hamm M, Pfeuffer J, et al. Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficient metrics. Magn Reson Med. 2015;73:1137-1150. – reference: Yang QX, Rupprecht S, Luo W, Sica C, Herse Z, Wang J, et al. Radiofrequency field enhancement with high dielectric constant (HDC) pads in a receive array coil at 3.0 T. J Magn Reson Imag. 2013;38:435-440. – reference: Mallow J, Herrmann T, Kim KN, Stadler J, Mylius J, Brosch M, et al. Ultra-high field MRI for primate imaging using the travelling-wave concept. Magn Reson Mater Phy. 2012;26:389-400. – reference: Eustace SJ, Nelson E. Whole body magnetic resonance imaging; a valuable adjunct to clinical examination. BMJ : British Medical Journal. 2004;328(7453):1387-1388. – reference: Uğurbil K. Magnetic resonance imaging at ultrahigh fields. IEEE Trans Biomed Eng. 2014;61:1364-1379. – reference: Alecci M, Collins CM, Smith MB, Jezzard P. Radio frequency magnetic field mapping of a 3 T birdcage coil: experimental and theoretical dependence on sample properties. Magn Reson Med. 2001;46:379-385. – reference: Notaros BM. Higher order frequency-domain computational electromagnetics. Invited review paper, Special Issue on Large and Multiscale Computational Electromagnetics. IEEE Trans Antennas Propagat. 2008;56:2251-2276. – reference: Brink WM, Versluis MJ, Peeters JM, Börnert P, Webb AG. "Passive radiofrequency shimming in the thigh at 3 Tesla using high permittivity material and body coil receive uniformity correction". Magn Reson Med. 2015. doi: 10.1002/mrm.26070. – reference: Zhang B, Sodickson DK, Lattanzi R, Duan Q, Stoeckel B, Wiggins GC. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms. Magn Reson Med. 2012;67:1183-1193. – reference: Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, et al. Efficient high-frequency body coil for high-field MRI. Magn Reson Med. 2004;52:851-859. – reference: Ohliger MA, Sodickson DK. An introduction to coil array design for parallel MRI. NMR Biomed. 2006;19:300-315. – reference: Alecci M, Collins CM, Wilson J, Liu W, Smith MB, Jezzard P. Theoretical and experimental evaluation of detached endcaps for 3 T birdcage coils. Magn Reson Med. 2003;49:363-370. – reference: Alsop DC, Connick TJ, Mizsei G. A spiral volume coil for improved RF field homogeneity at high static magnetic field strength. Magn Reson Med. 1998;40:49-54. – reference: Andreychenko A, Kroeze H, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA. Coaxial waveguide for travelling wave MRI at ultrahigh fields. Magn Reson Med. 2013;70:875-884. – reference: Liang ZP, Lauterbur PC. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. New York: IEEE Press; 2000. – reference: Hoult DI, Lauterbur PC. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson. 1979;34:425-433. – reference: Callaghan PT. Principles of Nuclear Magnetic Resonance Microscopy. New York: Oxford University Press; 1993. – reference: Djordjevic M, Notaros BM. Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers. IEEE Trans Antennas Propagat. 2004;52:2118-2129. – reference: Vazquez F, Martin R, Marrufo O, Rodriguez AO. "Travelling wave magnetic resonance imaging at 3T". J Appl Phys [Online]. 2013;114:064906. Available: http://dx.doi.org/10.1063/1.4817972. – reference: Notaros BM. Electromagnetics. New Jersey: PEARSON Prentice Hall; 2010. – reference: Van den Berg CA, Van den Bergen B, Van de Kamer JB, Raaymakers BW, Kroeze H, Bartels LW, et al. Simultaneous B+ homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med. 2007;57:577-586. – reference: Brunner DO, Paška J, Froehlich J, Pruessmann KP. Traveling-wave RF shimming and parallel MRI. Magn Reson Med. 2011;66:290-300. – reference: Pohmann R, Speck O, Scheffler K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3,4, and 9.4 Tesla using current receive coil arrays. Magn Reson Med. 2015;75:801-809. – reference: Andreychenko A, Bluemink JJ, Raaijmakers AJ, Lagendijk JJ, Luijten PR, van den Berg CA. Improved RF performance of travelling wave MR with a high permittivity dielectric lining of the bore. Magn Reson Med. 2013;70:885-894. – reference: Andreychenko A, Kroeze H, Boer VO, Lagendijk JJ, Luijten PR, van den Berg CA. Improved steering of the RF field of traveling wave MR with a multimode, coaxial waveguide. Magn Reson Med. 2014;71:1641-1649. – reference: Brown R, Lakshmanan K, Madelin G, Alon L, Chang G, Sodickson DK, et al. "A flexible nested sodium and proton coil array with wideband matching for Knee cartilage MRI at 3T". Magn Reson Med. 2015. doi: 10.1002/mrm.26017. – reference: Hoffmann J, Shajan G, Budde J, Scheffler K, Pohmann R. Human brain imaging at 9.4 T using a tunable patch anetnna for transmission. Magn Reson Med. 2013;69:1494-1500. – volume: 71 start-page: 1641 year: 2014 end-page: 1649 article-title: Improved steering of the RF field of traveling wave MR with a multimode, coaxial waveguide publication-title: Magn Reson Med – volume: 75 start-page: 801 year: 2015 end-page: 809 article-title: Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3,4, and 9.4 Tesla using current receive coil arrays publication-title: Magn Reson Med – volume: 49 start-page: 363 year: 2003 end-page: 370 article-title: Theoretical and experimental evaluation of detached endcaps for 3 T birdcage coils publication-title: Magn Reson Med – volume: 40 start-page: 49 year: 1998 end-page: 54 article-title: A spiral volume coil for improved RF field homogeneity at high static magnetic field strength publication-title: Magn Reson Med – volume: 70 start-page: 875 year: 2013 end-page: 884 article-title: Coaxial waveguide for travelling wave MRI at ultrahigh fields publication-title: Magn Reson Med – volume: 19 start-page: 300 year: 2006 end-page: 315 article-title: An introduction to coil array design for parallel MRI publication-title: NMR Biomed – volume: 52 start-page: 2118 year: 2004 end-page: 2129 article-title: Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers publication-title: IEEE Trans Antennas Propagat – volume: 70 start-page: 885 year: 2013 end-page: 894 article-title: Improved RF performance of travelling wave MR with a high permittivity dielectric lining of the bore publication-title: Magn Reson Med – year: 2015 article-title: “Passive radiofrequency shimming in the thigh at 3 Tesla using high permittivity material and body coil receive uniformity correction” publication-title: Magn Reson Med – start-page: 4746 year: 2009 – start-page: 1825 year: 2015 – year: 2000 – start-page: 2746 year: 2013 – volume: 67 start-page: 1183 year: 2012 end-page: 1193 article-title: Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms publication-title: Magn Reson Med – volume: 52 start-page: 851 year: 2004 end-page: 859 article-title: Efficient high‐frequency body coil for high‐field MRI publication-title: Magn Reson Med – start-page: 971 year: 2015 end-page: 972 – start-page: 2127 year: 2016 – volume: 73 start-page: 1137 year: 2015 end-page: 1150 article-title: Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficient metrics publication-title: Magn Reson Med – volume: 69 start-page: 1494 year: 2013 end-page: 1500 article-title: Human brain imaging at 9.4 T using a tunable patch anetnna for transmission publication-title: Magn Reson Med – year: 2014 – volume: 38 start-page: 435 year: 2013 end-page: 440 article-title: Radiofrequency field enhancement with high dielectric constant (HDC) pads in a receive array coil at 3.0 T publication-title: J Magn Reson Imag – year: 2010 – start-page: 4883 year: 2013 – start-page: 107 year: 2006 end-page: 115 – volume: 56 start-page: 2251 year: 2008 end-page: 2276 article-title: Higher order frequency‐domain computational electromagnetics. Invited review paper, Special Issue on Large and Multiscale Computational Electromagnetics publication-title: IEEE Trans Antennas Propagat – volume: 66 start-page: 290 year: 2011 end-page: 300 article-title: Traveling‐wave RF shimming and parallel MRI publication-title: Magn Reson Med – volume: 57 start-page: 577 year: 2007 end-page: 586 article-title: Simultaneous B+ homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil publication-title: Magn Reson Med – volume: 46 start-page: 379 year: 2001 end-page: 385 article-title: Radio frequency magnetic field mapping of a 3 T birdcage coil: experimental and theoretical dependence on sample properties publication-title: Magn Reson Med – year: 2015 article-title: “A flexible nested sodium and proton coil array with wideband matching for Knee cartilage MRI at 3T” publication-title: Magn Reson Med – volume: 34 start-page: 425 year: 1979 end-page: 433 article-title: The sensitivity of the zeugmatographic experiment involving human samples publication-title: J Magn Reson – start-page: 1346 year: 2015 end-page: 1347 – volume: 63 start-page: 622 year: 1985 end-page: 628 article-title: An efficient, highly homogeneous radiofrequency coil for whole‐body NMR imaging at 1.5 T publication-title: J Magn Reson – volume: 61 start-page: 1364 year: 2014 end-page: 1379 article-title: Magnetic resonance imaging at ultrahigh fields publication-title: IEEE Trans Biomed Eng – volume: 328 start-page: 1387 issue: 7453 year: 2004 end-page: 1388 article-title: Whole body magnetic resonance imaging; a valuable adjunct to clinical examination publication-title: BMJ : British Medical Journal – year: 1993 – volume: 114 start-page: 064906 year: 2013 article-title: “Travelling wave magnetic resonance imaging at 3T” publication-title: J Appl Phys [Online] – volume: 26 start-page: 389 year: 2012 end-page: 400 article-title: Ultra‐high field MRI for primate imaging using the travelling‐wave concept publication-title: Magn Reson Mater Phy – year: 2015 – year: 2013 |
SSID | ssj0028960 |
Score | 2.0539746 |
Snippet | A novel method for excitation of RF B1 field in high‐field (3‐T) magnetic resonance imaging (MRI) systems using a subject‐loaded quadrifilar helical antenna as... A novel method for excitation of RF B1 field in high-field (3-T) magnetic resonance imaging (MRI) systems using a subject-loaded quadrifilar helical antenna as... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 106 |
SubjectTerms | B1+ field uniformity high-field 3-T MRI systems magnetic resonance imaging (MRI) quadrifilar helical-antenna coil RF body coils |
Title | Subject-loaded quadrifilar helical-antenna RF coil with high B1+ field uniformity and large FOV for 3-T MRI |
URI | https://api.istex.fr/ark:/67375/WNG-18L0LJFB-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmr.b.21326 https://www.proquest.com/docview/1844779349 |
Volume | 46B |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQUiUubXlU3RYqHyouKEs22IlzZFEDRSxIK2i5WWN7LFYs2bIPCfXUn9Df2F_SsZMutLdyi-LYUjIPfzOZ-czYRzS-yPAAkgxKmQjvTGKEKBIre-DLwmEvNoUNzvOTK3F6La_b2pzQC9PwQywTbsEyor8OBg5mtv9IGmrvpl3TzSiaCoTboVorQKLhkjyKIommR1hKCrdId9vuPBrZfzKXQGn4ng9_IcynODVuNNWr5jTVWeQnDPUlt93F3HTt93_YG5_9Dq_ZyxaC8sNGZ9bZCtYb7EUsBbWzTXZPviQkZ379-DmegEPH7xfgpiM_oiCY32DI8o1pMIikroEPK24nozEPGV0e2I95v7fHY2UcX9Sh8euOkD6H2vFxKDvn1cUXTnf5AS1yyQfDz1vsqvp0eXSStAczJCOy3zyhIEyY0mfoC2kQKGRyZYqQKQSJClIL4YedtBIIjyqFNId8qhKAxhlHr_uGrdaTGt8ynqP0ubKSNlMlMrSQW5UCOA8FiiL1HbYbxaO_NeQbGqa3oRatkPrr-bHuqbP07LTq67zDtv_IT7dmOKNh0jvyQKLssL0oiOU6DV1zpkkE2ugoAn00GPbj1bv_evo9WyMYlTdFvNtsdT5d4A5Blbn5EDXyN9p_5nU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgCMEL_xEdA_yAeJnSpZmdOI90InSjLVLVwd6ss30W1bp061oJ8cRH4DPySTg7WRm8wVuUi60498e_u9ydGXuNxhcZ7kOSQSkT4Z1JjBBFYmUPfFk47MWisNE4HxyLoxN50gbcQi1M0x9iE3ALmhHtdVDwEJDe-9011J4tu6abkTuV32S3wpne0aWabNpHkS_RVAlLSQ4XSW9bn0eUvWuDCZaGL_r1D4x5HanGraa6z_TVSzYZJqfd9cp07be_-jf-_yoesHstCuVvG7F5yG5g_Yjdjtmg9vIxuyBzEuIzP7__mC_AoeMXa3DLmZ-RH8y_YAj0zYkYuFLXwCcVt4vZnIegLg8NkHm_t8tjchxf16H264zAPofa8XnIPOfVx0-c7vJ9mmTKR5PDJ-y4ejc9GCTt2QzJjFQ4T8gPE6b0GfpCGgTymlyZImQKQaKC1EL4ZyetBIKkSiGNIbOqBKBxxtFyn7KtelHjM8ZzlD5XVtJ-qkSGFnKrUgDnoUBRpL7D3kT-6POm_4aG5WlIRyuk_jx-r3tqmA6Pqr7OO2znioG61cRLIpPokRESZYftRk5s5mk6NmeaWKCNjizQB6NJP15t_9PTr9idwXQ01MPD8Yfn7C6hqrzJ6d1hW6vlGl8QclmZl1E8fwE-BuqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMSFd8VCAR8QlyrbbGonzpFtCW3ZXdCqhd6ssT0Wq26z7T4kxImfwG_klzB2wlK4wS2KY0vJPPzNZOYzYy_R-CLDXUgyKGUivDOJEaJIrOyBLwuHvdgUNhzlByfi6FSetrU5oRem4YdYJ9yCZUR_HQz8wvmd36Sh9nzeNd2Moqn8Orsh8lQFpd4fr9mjKJRomoSlpHiLlLdtz6ORnSuTCZWGD_rlD4h5FajGnaa62xynuogEhaHA5Ky7Wpqu_foXfeN_v8Q9dqfFoPx1ozT32TWsH7CbsRbULh6yS3ImITvz49v36QwcOn65Ajef-AlFwfwzhjTflAaDTOoa-LjidjaZ8pDS5YH-mPd72zyWxvFVHTq_zgnqc6gdn4a6c169_8jpLt-lRY75cHz4iJ1Ub473DpL2ZIZkQgacJxSFCVP6DH0hDQLFTK5METKFIFFBaiH8sZNWAgFSpZDmkFNVAtA44-h1N9lGPavxMeM5Sp8rK2k3VSJDC7lVKYDzUKAoUt9hr6J49EXDvqFhfhaK0QqpP43e6p4apIOjqq_zDtv6JT_d2uGChknxyAWJssO2oyDW6zR8zZkmEWijowj03nDcj1dP_unpF-zWh_1KDw5H756y2wSp8qagd4ttLOcrfEawZWmeR-X8CbHf6Ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-loaded+quadrifilar+helical-antenna+RF+coil+with+high+B1%2B+field+uniformity+and+large+FOV+for+3-T+MRI&rft.jtitle=Concepts+in+magnetic+resonance.+Part+B%2C+Magnetic+resonance+engineering&rft.au=Athalye%2C+Pranav+S&rft.au=Sekeljic%2C+Nada+J&rft.au=Ilic%2C+Milan+M&rft.au=Tonyushkin%2C+Alexey+A&rft.date=2016-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1552-5031&rft.eissn=1552-504X&rft.volume=46B&rft.issue=3&rft.spage=106&rft_id=info:doi/10.1002%2Fcmr.b.21326&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4265910401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5031&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5031&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5031&client=summon |