Closing the Affective Loop via Experience-Driven Reinforcement Learning Designers
Autonomously tailoring content to a set of pre-determined affective patterns has long been considered the holy grail of affect-aware human-computer interaction at large. The experience-driven procedural content generation framework realises this vision by searching for content that elicits a certain...
Saved in:
Published in | International Conference on Affective Computing and Intelligent Interaction and workshops pp. 257 - 265 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
15.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2156-8111 |
DOI | 10.1109/ACII63134.2024.00034 |
Cover
Loading…
Abstract | Autonomously tailoring content to a set of pre-determined affective patterns has long been considered the holy grail of affect-aware human-computer interaction at large. The experience-driven procedural content generation framework realises this vision by searching for content that elicits a certain experience pattern to a user. In this paper, we propose a novel reinforcement learning (RL) framework for generating affect-tailored content, and we test it in the domain of racing games. Specifically, the experience-driven RL (EDRL) framework is given a target arousal trace, and it then generates a racetrack that elicits the desired affective responses for a particular type of player. EDRL leverages a reward function that assesses the affective pattern of any generated racetrack from a corpus of arousal traces. Our findings suggest that EDRL can accurately generate affect-driven racing game levels according to a designer's style and outperforms search-based methods for personalised content generation. The method is not only directly applicable to game content generation tasks but also employable broadly to any domain that uses content for affective adaptation. |
---|---|
AbstractList | Autonomously tailoring content to a set of pre-determined affective patterns has long been considered the holy grail of affect-aware human-computer interaction at large. The experience-driven procedural content generation framework realises this vision by searching for content that elicits a certain experience pattern to a user. In this paper, we propose a novel reinforcement learning (RL) framework for generating affect-tailored content, and we test it in the domain of racing games. Specifically, the experience-driven RL (EDRL) framework is given a target arousal trace, and it then generates a racetrack that elicits the desired affective responses for a particular type of player. EDRL leverages a reward function that assesses the affective pattern of any generated racetrack from a corpus of arousal traces. Our findings suggest that EDRL can accurately generate affect-driven racing game levels according to a designer's style and outperforms search-based methods for personalised content generation. The method is not only directly applicable to game content generation tasks but also employable broadly to any domain that uses content for affective adaptation. |
Author | Gallotta, Roberto Barthet, Matthew Khalifa, Ahmed Yannakakis, Georgios N. Branco, Diogo |
Author_xml | – sequence: 1 givenname: Matthew surname: Barthet fullname: Barthet, Matthew email: matthew.barthet@um.edu.mt organization: Institute of Digital Games, University of Malta,Msida,Malta – sequence: 2 givenname: Diogo surname: Branco fullname: Branco, Diogo email: diogo.branco@arditi.pt organization: University of Madeira,Faculty of Exact Sciences and Engineering,Madeira,Portugal – sequence: 3 givenname: Roberto surname: Gallotta fullname: Gallotta, Roberto email: roberto.gallotta@um.edu.mt organization: Institute of Digital Games, University of Malta,Msida,Malta – sequence: 4 givenname: Ahmed surname: Khalifa fullname: Khalifa, Ahmed email: ahmed.khalifa@um.edu.mt organization: Institute of Digital Games, University of Malta,Msida,Malta – sequence: 5 givenname: Georgios N. surname: Yannakakis fullname: Yannakakis, Georgios N. email: georgios.yannakakis@um.edu.mt organization: Institute of Digital Games, University of Malta,Msida,Malta |
BookMark | eNotkMFOwzAQRA0CiVLyBz34BxK8WdtxjlVaIFIkBIJz5STrYtQ6lRNV8PcEwWkO894c5pZdhSEQYysQGYAo79dVXWsElFkucpkJIVBesKQsSoMICrTE4pItclA6NQBww5Jx_JwxKJUwRi3YS3UYRh_2fPogvnaOusmfiTfDcOJnb_n260TRU-go3cS5CfyVfHBD7OhIYeIN2Rh-_Q2Nfh8ojnfs2tnDSMl_Ltn7w_atekqb58e6Wjeph8JMaa_Q2Fa7lmxnCyMNlgqEa1E5a3rTO6VJ5L22DmU-A51uTS9JWNErK2SJS7b62_VEtDtFf7Txeze_UgjMFf4Aj-lTgw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ACII63134.2024.00034 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798331516437 |
EISSN | 2156-8111 |
EndPage | 265 |
ExternalDocumentID | 10970325 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundação para a Ciência e Tecnologia grantid: 2021.05646.BD funderid: 10.13039/501100001871 – fundername: Malta Council for Science and Technology funderid: 10.13039/501100001867 |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i178t-d538ab6fbeaca784839510fb35fa8d8df56e02d6af342a78c6b8d4e0a0d5a0493 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:03:47 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i178t-d538ab6fbeaca784839510fb35fa8d8df56e02d6af342a78c6b8d4e0a0d5a0493 |
PageCount | 9 |
ParticipantIDs | ieee_primary_10970325 |
PublicationCentury | 2000 |
PublicationDate | 2024-Sept.-15 |
PublicationDateYYYYMMDD | 2024-09-15 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sept.-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Affective Computing and Intelligent Interaction and workshops |
PublicationTitleAbbrev | ACII |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001950885 |
Score | 1.8854607 |
Snippet | Autonomously tailoring content to a set of pre-determined affective patterns has long been considered the holy grail of affect-aware human-computer interaction... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 257 |
SubjectTerms | Affective computing Faces Genetic algorithms procedural content generation Procedural generation Reinforcement learning |
Title | Closing the Affective Loop via Experience-Driven Reinforcement Learning Designers |
URI | https://ieeexplore.ieee.org/document/10970325 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0IJ0_4gVFRswevhe1ud1uPBCRglKiRhBvZrxqioYQUD_56Z5YixsTEW9Ns02anOzM7O-89Qq75DZjScYQoCx7BH2IiE0sXsTxViReeMYto5IexGk6Su6mcVmD1gIXx3ofmM9_Gy3CW7wq7xlJZB09LmeCyRmqwc9uAtXYFlaBnKit4HAztdHujkRKxwNIJR5JshvLIP0RUQgwZNMh4-_ZN68hbe12atv38Rcz47887IM0dXI8-fgeiQ7LnF0eksdVroNXyPSZPvfcCSwMUkj7aDY0c4OvofVEs6cdc0x3tcdRfoRekzz4Qq9pQQ6QVF-sr7Ye2D0gcm2QyuH3pDaNKUiGax2lWRg78mzYqN-BvdZolkB7BosyNkLnOXOZyqTzjTulcJBwGWGUyl3immZMaNhPihNQXxcKfEpoqxg1yATHLEsckPGwh3URGOc2tSM9IE6dottywZsy2s3P-x_0W2UczYS9GLC9IvVyt_SUE_NJcBUN_AacQqhw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3rCB8a3PXgtdNttdz0S0IACUQMJN9LXGqJhCVk8-OudlkWMiYm3zaab3XTamdnp932D0A27BVNa5inKnBFYIZroSFhCs0TGjjtKjWcj9weyM4ofxmJcktUDF8Y5F8Bnru4vw1m-zc3Sl8oa_rSUcia20Q4EfhGt6FqbkkroaCpKghwMbjRb3a7kEffFE-ZlsqlvkPyjjUqIIvdVNFi_fwUeeasvC103n7-kGf_9gfuotiHs4afvUHSAttzsEFXXHRtwuYGP0HPrPffFAQxpH24GKAd4O9zL8zn-mCq8ET4m7YX3g_jFBWlVE6qIuFRjfcXtAPyA1LGGRvd3w1aHlE0VyDRK0oJY8HBKy0yDx1VJGkOCBNsy01xkKrWpzYR0lFmpMh4zGGCkTm3sqKJWKPid4MeoMstn7gThRFKmvRoQNTS2VMDDBhJOrymnmOHJKar5KZrMV7oZk_XsnP1x_xrtdob93qTXHTyeoz1vMo_MiMQFqhSLpbuE8F_oq2D0L7ZkrWU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Closing+the+Affective+Loop+via+Experience-Driven+Reinforcement+Learning+Designers&rft.au=Barthet%2C+Matthew&rft.au=Branco%2C+Diogo&rft.au=Gallotta%2C+Roberto&rft.au=Khalifa%2C+Ahmed&rft.date=2024-09-15&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=257&rft.epage=265&rft_id=info:doi/10.1109%2FACII63134.2024.00034&rft.externalDocID=10970325 |