Closing the Affective Loop via Experience-Driven Reinforcement Learning Designers

Autonomously tailoring content to a set of pre-determined affective patterns has long been considered the holy grail of affect-aware human-computer interaction at large. The experience-driven procedural content generation framework realises this vision by searching for content that elicits a certain...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Affective Computing and Intelligent Interaction and workshops pp. 257 - 265
Main Authors Barthet, Matthew, Branco, Diogo, Gallotta, Roberto, Khalifa, Ahmed, Yannakakis, Georgios N.
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.09.2024
Subjects
Online AccessGet full text
ISSN2156-8111
DOI10.1109/ACII63134.2024.00034

Cover

Loading…
Abstract Autonomously tailoring content to a set of pre-determined affective patterns has long been considered the holy grail of affect-aware human-computer interaction at large. The experience-driven procedural content generation framework realises this vision by searching for content that elicits a certain experience pattern to a user. In this paper, we propose a novel reinforcement learning (RL) framework for generating affect-tailored content, and we test it in the domain of racing games. Specifically, the experience-driven RL (EDRL) framework is given a target arousal trace, and it then generates a racetrack that elicits the desired affective responses for a particular type of player. EDRL leverages a reward function that assesses the affective pattern of any generated racetrack from a corpus of arousal traces. Our findings suggest that EDRL can accurately generate affect-driven racing game levels according to a designer's style and outperforms search-based methods for personalised content generation. The method is not only directly applicable to game content generation tasks but also employable broadly to any domain that uses content for affective adaptation.
AbstractList Autonomously tailoring content to a set of pre-determined affective patterns has long been considered the holy grail of affect-aware human-computer interaction at large. The experience-driven procedural content generation framework realises this vision by searching for content that elicits a certain experience pattern to a user. In this paper, we propose a novel reinforcement learning (RL) framework for generating affect-tailored content, and we test it in the domain of racing games. Specifically, the experience-driven RL (EDRL) framework is given a target arousal trace, and it then generates a racetrack that elicits the desired affective responses for a particular type of player. EDRL leverages a reward function that assesses the affective pattern of any generated racetrack from a corpus of arousal traces. Our findings suggest that EDRL can accurately generate affect-driven racing game levels according to a designer's style and outperforms search-based methods for personalised content generation. The method is not only directly applicable to game content generation tasks but also employable broadly to any domain that uses content for affective adaptation.
Author Gallotta, Roberto
Barthet, Matthew
Khalifa, Ahmed
Yannakakis, Georgios N.
Branco, Diogo
Author_xml – sequence: 1
  givenname: Matthew
  surname: Barthet
  fullname: Barthet, Matthew
  email: matthew.barthet@um.edu.mt
  organization: Institute of Digital Games, University of Malta,Msida,Malta
– sequence: 2
  givenname: Diogo
  surname: Branco
  fullname: Branco, Diogo
  email: diogo.branco@arditi.pt
  organization: University of Madeira,Faculty of Exact Sciences and Engineering,Madeira,Portugal
– sequence: 3
  givenname: Roberto
  surname: Gallotta
  fullname: Gallotta, Roberto
  email: roberto.gallotta@um.edu.mt
  organization: Institute of Digital Games, University of Malta,Msida,Malta
– sequence: 4
  givenname: Ahmed
  surname: Khalifa
  fullname: Khalifa, Ahmed
  email: ahmed.khalifa@um.edu.mt
  organization: Institute of Digital Games, University of Malta,Msida,Malta
– sequence: 5
  givenname: Georgios N.
  surname: Yannakakis
  fullname: Yannakakis, Georgios N.
  email: georgios.yannakakis@um.edu.mt
  organization: Institute of Digital Games, University of Malta,Msida,Malta
BookMark eNotkMFOwzAQRA0CiVLyBz34BxK8WdtxjlVaIFIkBIJz5STrYtQ6lRNV8PcEwWkO894c5pZdhSEQYysQGYAo79dVXWsElFkucpkJIVBesKQsSoMICrTE4pItclA6NQBww5Jx_JwxKJUwRi3YS3UYRh_2fPogvnaOusmfiTfDcOJnb_n260TRU-go3cS5CfyVfHBD7OhIYeIN2Rh-_Q2Nfh8ojnfs2tnDSMl_Ltn7w_atekqb58e6Wjeph8JMaa_Q2Fa7lmxnCyMNlgqEa1E5a3rTO6VJ5L22DmU-A51uTS9JWNErK2SJS7b62_VEtDtFf7Txeze_UgjMFf4Aj-lTgw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACII63134.2024.00034
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331516437
EISSN 2156-8111
EndPage 265
ExternalDocumentID 10970325
Genre orig-research
GrantInformation_xml – fundername: Fundação para a Ciência e Tecnologia
  grantid: 2021.05646.BD
  funderid: 10.13039/501100001871
– fundername: Malta Council for Science and Technology
  funderid: 10.13039/501100001867
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-d538ab6fbeaca784839510fb35fa8d8df56e02d6af342a78c6b8d4e0a0d5a0493
IEDL.DBID RIE
IngestDate Wed Aug 27 02:03:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-d538ab6fbeaca784839510fb35fa8d8df56e02d6af342a78c6b8d4e0a0d5a0493
PageCount 9
ParticipantIDs ieee_primary_10970325
PublicationCentury 2000
PublicationDate 2024-Sept.-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-15
  day: 15
PublicationDecade 2020
PublicationTitle International Conference on Affective Computing and Intelligent Interaction and workshops
PublicationTitleAbbrev ACII
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001950885
Score 1.8854607
Snippet Autonomously tailoring content to a set of pre-determined affective patterns has long been considered the holy grail of affect-aware human-computer interaction...
SourceID ieee
SourceType Publisher
StartPage 257
SubjectTerms Affective computing
Faces
Genetic algorithms
procedural content generation
Procedural generation
Reinforcement learning
Title Closing the Affective Loop via Experience-Driven Reinforcement Learning Designers
URI https://ieeexplore.ieee.org/document/10970325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0IJ0_4gVFRswevhe1ud1uPBCRglKiRhBvZrxqioYQUD_56Z5YixsTEW9Ns02anOzM7O-89Qq75DZjScYQoCx7BH2IiE0sXsTxViReeMYto5IexGk6Su6mcVmD1gIXx3ofmM9_Gy3CW7wq7xlJZB09LmeCyRmqwc9uAtXYFlaBnKit4HAztdHujkRKxwNIJR5JshvLIP0RUQgwZNMh4-_ZN68hbe12atv38Rcz47887IM0dXI8-fgeiQ7LnF0eksdVroNXyPSZPvfcCSwMUkj7aDY0c4OvofVEs6cdc0x3tcdRfoRekzz4Qq9pQQ6QVF-sr7Ye2D0gcm2QyuH3pDaNKUiGax2lWRg78mzYqN-BvdZolkB7BosyNkLnOXOZyqTzjTulcJBwGWGUyl3immZMaNhPihNQXxcKfEpoqxg1yATHLEsckPGwh3URGOc2tSM9IE6dottywZsy2s3P-x_0W2UczYS9GLC9IvVyt_SUE_NJcBUN_AacQqhw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3rCB8a3PXgtdNttdz0S0IACUQMJN9LXGqJhCVk8-OudlkWMiYm3zaab3XTamdnp932D0A27BVNa5inKnBFYIZroSFhCs0TGjjtKjWcj9weyM4ofxmJcktUDF8Y5F8Bnru4vw1m-zc3Sl8oa_rSUcia20Q4EfhGt6FqbkkroaCpKghwMbjRb3a7kEffFE-ZlsqlvkPyjjUqIIvdVNFi_fwUeeasvC103n7-kGf_9gfuotiHs4afvUHSAttzsEFXXHRtwuYGP0HPrPffFAQxpH24GKAd4O9zL8zn-mCq8ET4m7YX3g_jFBWlVE6qIuFRjfcXtAPyA1LGGRvd3w1aHlE0VyDRK0oJY8HBKy0yDx1VJGkOCBNsy01xkKrWpzYR0lFmpMh4zGGCkTm3sqKJWKPid4MeoMstn7gThRFKmvRoQNTS2VMDDBhJOrymnmOHJKar5KZrMV7oZk_XsnP1x_xrtdob93qTXHTyeoz1vMo_MiMQFqhSLpbuE8F_oq2D0L7ZkrWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Closing+the+Affective+Loop+via+Experience-Driven+Reinforcement+Learning+Designers&rft.au=Barthet%2C+Matthew&rft.au=Branco%2C+Diogo&rft.au=Gallotta%2C+Roberto&rft.au=Khalifa%2C+Ahmed&rft.date=2024-09-15&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=257&rft.epage=265&rft_id=info:doi/10.1109%2FACII63134.2024.00034&rft.externalDocID=10970325