Comparative Analysis of Deep Learning Models for Structural Defect Segmentation in Bridges

Automated structural defect detection is essential for ensuring the safety and maintenance of civil infrastructure, particularly in bridges where defects such as cracks, spalling, and corrosion can compromise structural integrity. This paper presents a comparative study of three semantic segmentatio...

Full description

Saved in:
Bibliographic Details
Published inProceedings of IEEE Southeastcon pp. 166 - 170
Main Authors O'Neal, Kiara, Hu, Da
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated structural defect detection is essential for ensuring the safety and maintenance of civil infrastructure, particularly in bridges where defects such as cracks, spalling, and corrosion can compromise structural integrity. This paper presents a comparative study of three semantic segmentation models-U-Net, Feature Pyramid Network (FPN), and DeepLabv3+-for detecting and classifying structural defects in bridge imagery. Each model was evaluated using two encoder architectures, EfficientNet B3 and MobileOne S4, to assess the impact of different feature extraction strategies on segmentation accuracy. The experiments were conducted using the DACL benchmark dataset, which includes a wide range of defect classes. FPN paired with EfficientNet B3 demonstrated the highest mean accuracy across most defect categories, outperforming the other combinations, particularly in detecting common defects such as cracks and graffiti. However, certain defect types, such as hollow areas and cavities, presented challenges for all models. These results highlight the effectiveness of deep learning models in automated defect detection, while also identifying areas where further refinement is needed to improve performance in more complex defect scenarios.
AbstractList Automated structural defect detection is essential for ensuring the safety and maintenance of civil infrastructure, particularly in bridges where defects such as cracks, spalling, and corrosion can compromise structural integrity. This paper presents a comparative study of three semantic segmentation models-U-Net, Feature Pyramid Network (FPN), and DeepLabv3+-for detecting and classifying structural defects in bridge imagery. Each model was evaluated using two encoder architectures, EfficientNet B3 and MobileOne S4, to assess the impact of different feature extraction strategies on segmentation accuracy. The experiments were conducted using the DACL benchmark dataset, which includes a wide range of defect classes. FPN paired with EfficientNet B3 demonstrated the highest mean accuracy across most defect categories, outperforming the other combinations, particularly in detecting common defects such as cracks and graffiti. However, certain defect types, such as hollow areas and cavities, presented challenges for all models. These results highlight the effectiveness of deep learning models in automated defect detection, while also identifying areas where further refinement is needed to improve performance in more complex defect scenarios.
Author Hu, Da
O'Neal, Kiara
Author_xml – sequence: 1
  givenname: Kiara
  surname: O'Neal
  fullname: O'Neal, Kiara
  email: koneal23@students.kennesaw.edu
  organization: Kennesaw State University,Dept. of Computer Science,Marietta,GA
– sequence: 2
  givenname: Da
  surname: Hu
  fullname: Hu, Da
  email: dhu3@kennesaw.edu
  organization: Kennesaw State University,Dept. of Civil and Environmental Engineering,Marietta,GA
BookMark eNo1kMtKAzEYRqMo2Na-gYvsXE3NPZNlHesFKi6qIG5KJvNPjUyTkqRC396CuvoW53AW3xidhRgAoWtKZpQSc7OK-_IJNpcmBqkUEzNGmJwdkaZCsRM0NdrUnFNJRC30KRpRKeuKyPr9Ao1z_iKEEUHlCH00cbuzyRb_DXge7HDIPuPY4zuAHV6CTcGHDX6OHQwZ9zHhVUl7V_bJDkenB1fwCjZbCOXYiAH7gG-T7zaQL9F5b4cM07-doLf7xWvzWC1fHp6a-bLyVNelUrylgljhlDMErO2I0K3qHHHc2LrTtFNW2L6VpAamuDSOc2MEdbrXslWMT9DVb9cDwHqX_Namw_r_C_4Dfx9Z7A
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SoutheastCon56624.2025.10971462
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331504847
EISSN 1558-058X
EndPage 170
ExternalDocumentID 10971462
Genre orig-research
GrantInformation_xml – fundername: Kennesaw State University
  funderid: 10.13039/100009792
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i178t-63b140a4c6c90eaad047b6dc0c39a8d71d6a4afb508e26359c339941c7f75b623
IEDL.DBID RIE
IngestDate Wed Apr 30 05:50:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-63b140a4c6c90eaad047b6dc0c39a8d71d6a4afb508e26359c339941c7f75b623
PageCount 5
ParticipantIDs ieee_primary_10971462
PublicationCentury 2000
PublicationDate 2025-March-22
PublicationDateYYYYMMDD 2025-03-22
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-22
  day: 22
PublicationDecade 2020
PublicationTitle Proceedings of IEEE Southeastcon
PublicationTitleAbbrev SOUTHEASTCON
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020415
Score 2.2864988
Snippet Automated structural defect detection is essential for ensuring the safety and maintenance of civil infrastructure, particularly in bridges where defects such...
SourceID ieee
SourceType Publisher
StartPage 166
SubjectTerms Accuracy
Benchmark testing
Bridge infrastructure
Bridges
Corrosion
Deep learning
Defect detection
Feature extraction
Maintenance
Safety
Semantic segmentation
Title Comparative Analysis of Deep Learning Models for Structural Defect Segmentation in Bridges
URI https://ieeexplore.ieee.org/document/10971462
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEMcH7UH04qvimz0InpLmuZtcrUoRLEItFC9lXy1FTQq2Fz-9M5ukVUHwFkIIm102M7Mz_98AXAVCchOG3DMijbwklNxTxhovJ2OQGS2UQ2w89nlvmDyM0lEtVndaGGutKz6zPl26XL4p9ZKOyjqULcWdjX_cTYzcKrHWKroirfkWXNcQzY7rQEftb7plgS5LROcnUeo3r_jRTMXZkvtd6DejqEpIXv3lQvn68xeg8d_D3IP2WrbHnlYGaR82bHEAO9-Ig4fw0l3TvlkDJGHlhN1aO2c1bHXKqEPa2wdDh5YNHGCW4Bz4DNV-sIGdvteKpYLNCnZTkSLaMLy_e-72vLq9gjcLRbbweKwwupKJ5joPrJQmSITiRgc6zmVmRGi4TOREoQtnCVmT6xi9mSTUYiJShW7TEbSKsrDHwBQP0MrlXBtKEOOuztKMSxmrWBgZy-wE2jRN43lF0Bg3M3T6x_0z2KbVolqvKDqHFn6pvUDjv1CXbtG_AHRorzY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JS8NAFMYfouBycau4OwfBU9KsM8nVaqnaFqEtFC9ltpaiJgXbi3-98yZJq4LgLYQQJpNM3jcz7_s9gGuPcap8nzqKxYET-Zw6QmnlpBgMEiWZsIiNTpe2BtHjMB6WZnXrhdFa2-Qz7eKh3ctXuVzgUlkdd0vNyDZ_3A0T-OOgsGst51foNt-EmxKjWbc16LAATiPPjGgJcAUliN3qJj_Kqdho0tyFbtWOIonk1V3MhSs_fyEa_93QPaitjHvkeRmS9mFNZwew8405eAgvjRXvm1RIEpKPyZ3WM1LiVicEa6S9fRAjaUnPImYRz2GuwewP0tOT99KzlJFpRm4LVkQNBs37fqPllAUWnKnPkrlDQ2HmVzySVKae5lx5ERNUSU-GKU8U8xXlER8LI-I0QmtSGRo9E_mSjVksjHA6gvUsz_QxEEE9E-dSKhVuEZtxncQJ5TwUIVM85MkJ1LCbRrOCoTGqeuj0j_NXsNXqd9qj9kP36Qy28c1h5lcQnMO6eWp9YaTAXFzaD-ALyKaygA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+IEEE+Southeastcon&rft.atitle=Comparative+Analysis+of+Deep+Learning+Models+for+Structural+Defect+Segmentation+in+Bridges&rft.au=O%27Neal%2C+Kiara&rft.au=Hu%2C+Da&rft.date=2025-03-22&rft.pub=IEEE&rft.eissn=1558-058X&rft.spage=166&rft.epage=170&rft_id=info:doi/10.1109%2FSoutheastCon56624.2025.10971462&rft.externalDocID=10971462