A Mixed-Integer Conic Program for the Moving-Target Traveling Salesman Problem based on a Graph of Convex Sets

This paper introduces a new formulation that finds the optimum for the Moving-Target Traveling Salesman Problem (MT-TSP), which seeks to find a shortest path for an agent, that starts at a depot, visits a set of moving targets exactly once within their assigned time-windows, and returns to the depot...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 8847 - 8853
Main Authors Philip, Allen George, Ren, Zhongqiang, Rathinam, Sivakumar, Choset, Howie
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.10.2024
Subjects
Online AccessGet full text
ISSN2153-0866
DOI10.1109/IROS58592.2024.10802374

Cover

Loading…
Abstract This paper introduces a new formulation that finds the optimum for the Moving-Target Traveling Salesman Problem (MT-TSP), which seeks to find a shortest path for an agent, that starts at a depot, visits a set of moving targets exactly once within their assigned time-windows, and returns to the depot. The formulation relies on the key idea that when the targets move along lines, their trajectories become convex sets within the space-time coordinate system. The problem then reduces to finding the shortest path within a graph of convex sets, subject to some speed constraints. We compare our formulation with the current state-of-the-art Mixed Integer Conic Program (MICP) formulation for the MT-TSP. The experimental results show that our formulation outperforms the MICP for instances with up to 20 targets, with up to two orders of magnitude reduction in runtime, and up to a 60% tighter optimality gap. We also show that the solution cost from the convex relaxation of our formulation provides significantly tighter lower-bounds for the MT-TSP than the ones from the MICP.
AbstractList This paper introduces a new formulation that finds the optimum for the Moving-Target Traveling Salesman Problem (MT-TSP), which seeks to find a shortest path for an agent, that starts at a depot, visits a set of moving targets exactly once within their assigned time-windows, and returns to the depot. The formulation relies on the key idea that when the targets move along lines, their trajectories become convex sets within the space-time coordinate system. The problem then reduces to finding the shortest path within a graph of convex sets, subject to some speed constraints. We compare our formulation with the current state-of-the-art Mixed Integer Conic Program (MICP) formulation for the MT-TSP. The experimental results show that our formulation outperforms the MICP for instances with up to 20 targets, with up to two orders of magnitude reduction in runtime, and up to a 60% tighter optimality gap. We also show that the solution cost from the convex relaxation of our formulation provides significantly tighter lower-bounds for the MT-TSP than the ones from the MICP.
Author Ren, Zhongqiang
Philip, Allen George
Rathinam, Sivakumar
Choset, Howie
Author_xml – sequence: 1
  givenname: Allen George
  surname: Philip
  fullname: Philip, Allen George
  email: y262u297@tamu.edu
  organization: Texas A&M University,Department of Mechanical Engineering,College Station,TX,77843-3123
– sequence: 2
  givenname: Zhongqiang
  surname: Ren
  fullname: Ren, Zhongqiang
  email: zhongqiang.ren@sjtu.edu.cn
  organization: Shanghai Jiao Tong University,China
– sequence: 3
  givenname: Sivakumar
  surname: Rathinam
  fullname: Rathinam, Sivakumar
  email: srathinam@tamu.edu
  organization: Texas A&M University,Department of Mechanical Engineering,College Station,TX,77843-3123
– sequence: 4
  givenname: Howie
  surname: Choset
  fullname: Choset, Howie
  email: choset@andrew.cmu.edu
  organization: Carnegie Mellon University,Pittsburgh,PA,USA,15213
BookMark eNo1kM1Kw0AUhUdRsNa-geC8QOr8ZjLLUrQWWiqmrstNcieNJDNlEkp9e1vU1YHD-b7FuSc3Pngk5ImzKefMPi8_NrnOtBVTwYSacpYxIY26IhNrbCY1k8YYpq_JSHAtE5al6R2Z9P0XY4yz88SmI-JndN2csEqWfsAaI50H35T0PYY6QkddiHTYI12HY-PrZAuxxoFuIxyxPRc0hxb7DvwFKFrsaAE9VjR4CnQR4bCnwV2URzzRHIf-gdw6aHuc_OWYfL6-bOdvyWqzWM5nq6ThJh0SB8oUhU1daVhmJIoKtC6Vc04VSkplSw6lU6CVw1Q7KI01WiEoQJFVXMgxefz1Noi4O8Smg_i9-79I_gAlYV3O
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS58592.2024.10802374
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350377705
EISSN 2153-0866
EndPage 8853
ExternalDocumentID 10802374
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-fa47bb96fc70873e2da55c4fff4b43349c1acf4a54fe65fac79754ea4ae28d123
IEDL.DBID RIE
IngestDate Wed Aug 27 02:29:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-fa47bb96fc70873e2da55c4fff4b43349c1acf4a54fe65fac79754ea4ae28d123
PageCount 7
ParticipantIDs ieee_primary_10802374
PublicationCentury 2000
PublicationDate 2024-Oct.-14
PublicationDateYYYYMMDD 2024-10-14
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.2781048
Snippet This paper introduces a new formulation that finds the optimum for the Moving-Target Traveling Salesman Problem (MT-TSP), which seeks to find a shortest path...
SourceID ieee
SourceType Publisher
StartPage 8847
SubjectTerms Costs
Intelligent robots
Runtime
Trajectory
Traveling salesman problems
Title A Mixed-Integer Conic Program for the Moving-Target Traveling Salesman Problem based on a Graph of Convex Sets
URI https://ieeexplore.ieee.org/document/10802374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uT_ri18Rv8uBrurZJmuZRhnMKm-I22NtI0kSG2MrWyfDXm9ttTgXBt1JICGnoubn3nHMRuqKZkZxllDiPHQQMsIhWThLh8RXKTpQ60A53e0lnyO5HfLQSq1daGGttRT6zATxWtfysMHNIlTWBDxdTwWqo5m9uS7HWJqESCpnKZMXhikLZvHt66PtoWILeKmbBevSPPioVjLR3UW-9gCV75CWYlzowH7-8Gf-9wj3U2Cj28OMXFu2jLZsfoJ1vZoOHKL_G3cnCZgSSgM92ilvgigujgKCFffCKfTCIu1WKgQwqhjgeQHciUKzjvkeS2avKYQC0oMGAfxkucqzwLbhe48LBlO92gfu2nDXQsH0zaHXIqtsCmUQiKYlTTGgtQfsTpoLaOFOcG-acY5pRyqSJlHFMceZswp0yQgrOrGLKxmnmAfAI1fMit8cI-_9nkiaaa-EMVFZ1yG3qtIKJnL-Pn6AGbN34bWmoMV7v2ukf78_QNnxBgIyInaN6OZ3bCx8LlPqyOgOfMoezKQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06H9QXvyZ-mwdf07Vr0jSPMpybrlNcB3sbSZvIEFvZOhn-enO7zakg-FYKN4S09Nzee865CF35aSIYTX1iLHYQMMAiShpBuMVXaDv5vgHtcNQNWn16N2CDhVi91MJorUvymXbgsuzlp3kyhVJZDfhwdZ_TdbTBQI07l2utSiouF6EIFiwuzxW19tNDz-bDAhRXdeos439MUimBpLmDusstzPkjL860UE7y8cud8d973EXVlWYPP36h0R5a09k-2v5mN3iAsmscjWY6JVAGfNZj3ABfXIgCiha26Su26SCOyiIDiUuOOI5hPhFo1nHPYsnkVWYQAENoMCBgivMMS3wLvtc4N7Dku57hni4mVdRv3sSNFlnMWyAjjwcFMZJypQSof9yQ-7qeSsYSaoyhivo-FYknE0Mlo0YHzMiEC86ollTqephaCDxElSzP9BHC9gsahIFiipsEeqvKZTo0SsJCxv6RH6MqHN3wbW6pMVye2skf9y_RZiuOOsNOu3t_irbgaQKAePQMVYrxVJ_bzKBQF-X78Am24bZx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=A+Mixed-Integer+Conic+Program+for+the+Moving-Target+Traveling+Salesman+Problem+based+on+a+Graph+of+Convex+Sets&rft.au=Philip%2C+Allen+George&rft.au=Ren%2C+Zhongqiang&rft.au=Rathinam%2C+Sivakumar&rft.au=Choset%2C+Howie&rft.date=2024-10-14&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=8847&rft.epage=8853&rft_id=info:doi/10.1109%2FIROS58592.2024.10802374&rft.externalDocID=10802374