A Mixed-Integer Conic Program for the Moving-Target Traveling Salesman Problem based on a Graph of Convex Sets
This paper introduces a new formulation that finds the optimum for the Moving-Target Traveling Salesman Problem (MT-TSP), which seeks to find a shortest path for an agent, that starts at a depot, visits a set of moving targets exactly once within their assigned time-windows, and returns to the depot...
Saved in:
Published in | Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 8847 - 8853 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2153-0866 |
DOI | 10.1109/IROS58592.2024.10802374 |
Cover
Loading…
Abstract | This paper introduces a new formulation that finds the optimum for the Moving-Target Traveling Salesman Problem (MT-TSP), which seeks to find a shortest path for an agent, that starts at a depot, visits a set of moving targets exactly once within their assigned time-windows, and returns to the depot. The formulation relies on the key idea that when the targets move along lines, their trajectories become convex sets within the space-time coordinate system. The problem then reduces to finding the shortest path within a graph of convex sets, subject to some speed constraints. We compare our formulation with the current state-of-the-art Mixed Integer Conic Program (MICP) formulation for the MT-TSP. The experimental results show that our formulation outperforms the MICP for instances with up to 20 targets, with up to two orders of magnitude reduction in runtime, and up to a 60% tighter optimality gap. We also show that the solution cost from the convex relaxation of our formulation provides significantly tighter lower-bounds for the MT-TSP than the ones from the MICP. |
---|---|
AbstractList | This paper introduces a new formulation that finds the optimum for the Moving-Target Traveling Salesman Problem (MT-TSP), which seeks to find a shortest path for an agent, that starts at a depot, visits a set of moving targets exactly once within their assigned time-windows, and returns to the depot. The formulation relies on the key idea that when the targets move along lines, their trajectories become convex sets within the space-time coordinate system. The problem then reduces to finding the shortest path within a graph of convex sets, subject to some speed constraints. We compare our formulation with the current state-of-the-art Mixed Integer Conic Program (MICP) formulation for the MT-TSP. The experimental results show that our formulation outperforms the MICP for instances with up to 20 targets, with up to two orders of magnitude reduction in runtime, and up to a 60% tighter optimality gap. We also show that the solution cost from the convex relaxation of our formulation provides significantly tighter lower-bounds for the MT-TSP than the ones from the MICP. |
Author | Ren, Zhongqiang Philip, Allen George Rathinam, Sivakumar Choset, Howie |
Author_xml | – sequence: 1 givenname: Allen George surname: Philip fullname: Philip, Allen George email: y262u297@tamu.edu organization: Texas A&M University,Department of Mechanical Engineering,College Station,TX,77843-3123 – sequence: 2 givenname: Zhongqiang surname: Ren fullname: Ren, Zhongqiang email: zhongqiang.ren@sjtu.edu.cn organization: Shanghai Jiao Tong University,China – sequence: 3 givenname: Sivakumar surname: Rathinam fullname: Rathinam, Sivakumar email: srathinam@tamu.edu organization: Texas A&M University,Department of Mechanical Engineering,College Station,TX,77843-3123 – sequence: 4 givenname: Howie surname: Choset fullname: Choset, Howie email: choset@andrew.cmu.edu organization: Carnegie Mellon University,Pittsburgh,PA,USA,15213 |
BookMark | eNo1kM1Kw0AUhUdRsNa-geC8QOr8ZjLLUrQWWiqmrstNcieNJDNlEkp9e1vU1YHD-b7FuSc3Pngk5ImzKefMPi8_NrnOtBVTwYSacpYxIY26IhNrbCY1k8YYpq_JSHAtE5al6R2Z9P0XY4yz88SmI-JndN2csEqWfsAaI50H35T0PYY6QkddiHTYI12HY-PrZAuxxoFuIxyxPRc0hxb7DvwFKFrsaAE9VjR4CnQR4bCnwV2URzzRHIf-gdw6aHuc_OWYfL6-bOdvyWqzWM5nq6ThJh0SB8oUhU1daVhmJIoKtC6Vc04VSkplSw6lU6CVw1Q7KI01WiEoQJFVXMgxefz1Noi4O8Smg_i9-79I_gAlYV3O |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IROS58592.2024.10802374 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350377705 |
EISSN | 2153-0866 |
EndPage | 8853 |
ExternalDocumentID | 10802374 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/100000001 |
GroupedDBID | 6IE 6IF 6IH 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i176t-fa47bb96fc70873e2da55c4fff4b43349c1acf4a54fe65fac79754ea4ae28d123 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:29:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-fa47bb96fc70873e2da55c4fff4b43349c1acf4a54fe65fac79754ea4ae28d123 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10802374 |
PublicationCentury | 2000 |
PublicationDate | 2024-Oct.-14 |
PublicationDateYYYYMMDD | 2024-10-14 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems |
PublicationTitleAbbrev | IROS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001079896 |
Score | 2.2781048 |
Snippet | This paper introduces a new formulation that finds the optimum for the Moving-Target Traveling Salesman Problem (MT-TSP), which seeks to find a shortest path... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 8847 |
SubjectTerms | Costs Intelligent robots Runtime Trajectory Traveling salesman problems |
Title | A Mixed-Integer Conic Program for the Moving-Target Traveling Salesman Problem based on a Graph of Convex Sets |
URI | https://ieeexplore.ieee.org/document/10802374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uT_ri18Rv8uBrurZJmuZRhnMKm-I22NtI0kSG2MrWyfDXm9ttTgXBt1JICGnoubn3nHMRuqKZkZxllDiPHQQMsIhWThLh8RXKTpQ60A53e0lnyO5HfLQSq1daGGttRT6zATxWtfysMHNIlTWBDxdTwWqo5m9uS7HWJqESCpnKZMXhikLZvHt66PtoWILeKmbBevSPPioVjLR3UW-9gCV75CWYlzowH7-8Gf-9wj3U2Cj28OMXFu2jLZsfoJ1vZoOHKL_G3cnCZgSSgM92ilvgigujgKCFffCKfTCIu1WKgQwqhjgeQHciUKzjvkeS2avKYQC0oMGAfxkucqzwLbhe48LBlO92gfu2nDXQsH0zaHXIqtsCmUQiKYlTTGgtQfsTpoLaOFOcG-acY5pRyqSJlHFMceZswp0yQgrOrGLKxmnmAfAI1fMit8cI-_9nkiaaa-EMVFZ1yG3qtIKJnL-Pn6AGbN34bWmoMV7v2ukf78_QNnxBgIyInaN6OZ3bCx8LlPqyOgOfMoezKQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06H9QXvyZ-mwdf07Vr0jSPMpybrlNcB3sbSZvIEFvZOhn-enO7zakg-FYKN4S09Nzee865CF35aSIYTX1iLHYQMMAiShpBuMVXaDv5vgHtcNQNWn16N2CDhVi91MJorUvymXbgsuzlp3kyhVJZDfhwdZ_TdbTBQI07l2utSiouF6EIFiwuzxW19tNDz-bDAhRXdeos439MUimBpLmDusstzPkjL860UE7y8cud8d973EXVlWYPP36h0R5a09k-2v5mN3iAsmscjWY6JVAGfNZj3ABfXIgCiha26Su26SCOyiIDiUuOOI5hPhFo1nHPYsnkVWYQAENoMCBgivMMS3wLvtc4N7Dku57hni4mVdRv3sSNFlnMWyAjjwcFMZJypQSof9yQ-7qeSsYSaoyhivo-FYknE0Mlo0YHzMiEC86ollTqephaCDxElSzP9BHC9gsahIFiipsEeqvKZTo0SsJCxv6RH6MqHN3wbW6pMVye2skf9y_RZiuOOsNOu3t_irbgaQKAePQMVYrxVJ_bzKBQF-X78Am24bZx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=A+Mixed-Integer+Conic+Program+for+the+Moving-Target+Traveling+Salesman+Problem+based+on+a+Graph+of+Convex+Sets&rft.au=Philip%2C+Allen+George&rft.au=Ren%2C+Zhongqiang&rft.au=Rathinam%2C+Sivakumar&rft.au=Choset%2C+Howie&rft.date=2024-10-14&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=8847&rft.epage=8853&rft_id=info:doi/10.1109%2FIROS58592.2024.10802374&rft.externalDocID=10802374 |