Cross-Modal Attention for Multimodal Information Fusion: A Novel Approach to Attention Deficit Hyperactivity Disorder Detection
This paper presents a novel method for differentiating Attention Deficit Hyperactivity Disorder subjects from control participants by multimodal data fusion, including video observations and questionnaire responses. By exploiting the well known Video Vision Transformer model, we analyse the video mo...
Saved in:
Published in | 2024 27th International Conference on Information Fusion (FUSION) pp. 1 - 6 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
ISIF
08.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel method for differentiating Attention Deficit Hyperactivity Disorder subjects from control participants by multimodal data fusion, including video observations and questionnaire responses. By exploiting the well known Video Vision Transformer model, we analyse the video modality to identify the complex spatial-temporal information of ADHD symptoms. Simultaneously, a Multi-Layer Perceptron model is applied to evaluate structured questionnaire data by capturing key cognitive and emotional indicators of the ADHD symptoms. To fuse the two modalities, a cross-modal attention mechanism assigns adaptive weights to each feature based on its classification relevance. The targeted weighting significantly refines the proposed model's decision-making capability by concentrating on the most critical elements of the aggregated information. For training and testing, our novel Multimodal ADHD dataset recorded under the Intelligent Sensing ADHD Trial in collaboration with Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust UK is evaluated. The proposed model, ADViQ-AL achieves a 98.18% classification accuracy, 97.83% sensitivity, and 98.53% specificity in classifying ADHD and control groups. |
---|---|
AbstractList | This paper presents a novel method for differentiating Attention Deficit Hyperactivity Disorder subjects from control participants by multimodal data fusion, including video observations and questionnaire responses. By exploiting the well known Video Vision Transformer model, we analyse the video modality to identify the complex spatial-temporal information of ADHD symptoms. Simultaneously, a Multi-Layer Perceptron model is applied to evaluate structured questionnaire data by capturing key cognitive and emotional indicators of the ADHD symptoms. To fuse the two modalities, a cross-modal attention mechanism assigns adaptive weights to each feature based on its classification relevance. The targeted weighting significantly refines the proposed model's decision-making capability by concentrating on the most critical elements of the aggregated information. For training and testing, our novel Multimodal ADHD dataset recorded under the Intelligent Sensing ADHD Trial in collaboration with Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust UK is evaluated. The proposed model, ADViQ-AL achieves a 98.18% classification accuracy, 97.83% sensitivity, and 98.53% specificity in classifying ADHD and control groups. |
Author | Nash, Christian Nair, Rajesh Naqvi, Syed Mohsen |
Author_xml | – sequence: 1 givenname: Christian surname: Nash fullname: Nash, Christian email: c.nash@newcastle.ac.uk organization: Newcastle University,Intelligent Sensing and Communications Research Group,UK – sequence: 2 givenname: Rajesh surname: Nair fullname: Nair, Rajesh email: rajesh.nair@cntw.nhs.uk organization: Tyne and Wear, NHS Foundation Trust,Adult ADHD Services,Cumbria,Northumberland – sequence: 3 givenname: Syed Mohsen surname: Naqvi fullname: Naqvi, Syed Mohsen email: mohsen.naqvi@newcastle.ac.uk organization: Newcastle University,Intelligent Sensing and Communications Research Group,UK |
BookMark | eNpNkD1PwzAYhI0EA5T-AwaLPcVfyWuzVS2hlfoxQOfKdd4IS20cOW6lTvx1QgGJ6aR77m64O3LdhAYJeeRsJKTh5qncvM3Xq9wYrUeCCTXiDFghNb8iQwOagwRQBgpzSz4nMXRdtgyV3dNxStgkHxpah0iXx33yhwuYN71xsBdUHrtenumYrsIJ-1LbxmDdB03h38AUa-98orNzi9G65E8-nenUdyFWGHuc0H0H78lNbfcdDn91QDbly_tkli3Wr_PJeJF5DkXKEDnmO-BMYyWlVVDnRjgllNWwy6FinDuBBetd7AtKgVY6dw7ETitkUg7Iw8-uR8RtG_3BxvP27xf5BYoCX5w |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/FUSION59988.2024.10706381 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781737749769 1737749769 |
EndPage | 6 |
ExternalDocumentID | 10706381 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i176t-ee1e5b7108ed33a47f592c424a87b57d011c2e60592e1764478485cc72b84e033 |
IEDL.DBID | RIE |
IngestDate | Wed Oct 16 05:58:50 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-ee1e5b7108ed33a47f592c424a87b57d011c2e60592e1764478485cc72b84e033 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10706381 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-8 |
PublicationDateYYYYMMDD | 2024-07-08 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | 2024 27th International Conference on Information Fusion (FUSION) |
PublicationTitleAbbrev | FUSION |
PublicationYear | 2024 |
Publisher | ISIF |
Publisher_xml | – name: ISIF |
Score | 1.8782016 |
Snippet | This paper presents a novel method for differentiating Attention Deficit Hyperactivity Disorder subjects from control participants by multimodal data fusion,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Adaptation models Analytical models Attention Deficit Hyperactivity Disorder Attention mechanisms Data mining Data models Deep Learning Feature extraction Machine Learning Mental Health Multimodal Training Transformers Visualization |
Title | Cross-Modal Attention for Multimodal Information Fusion: A Novel Approach to Attention Deficit Hyperactivity Disorder Detection |
URI | https://ieeexplore.ieee.org/document/10706381 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66J08qrvgmB6-tNo9N6m1ZLYvg4sGFvS1JOguitiKpBy_-dSdp6wsEb6Vh0pJpOvMl3zch5BTACAk4ARHyjBJh0Be5yVyiQPFcG445bCTIzkbTubheyEUnVo9aGACI5DNIw2Xcyy9r14SlMpzhKkRYBDvriNxasVZbSJTxPMvPinn4AUlEEIG0xUTaG_w4OiVGjmKTzPpntoSRh7TxNnVvv8ox_vultsjwS6RHbz_DzzZZg2qHvE9C1Etu6tI80rH3LZmRYmZKo9T2KTZ0GqTYVDRhveyCjumsfgU06oqMU19_6-ASQqUJT6cIW6OuKhw5QfvSndjsI6WrGpJ5cXU3mSbdGQvJfaZGPgHIQFpMMzSUnBuhVjJnTjD0mrJSlTj9HQPEPDkDNBBCaaGlc4pZLeCc810yqOoK9ghlypUSVLZCECXMKrfYgdYWEyz8DjIN-2QYRm_53JbRWPYDd_DH_UOyEZwYubH6iAz8SwPHmAF4exI9_wHbKLJS |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWACRBFvPLAmEMeuHbaqEAVoI4ZW6lYlzlVCQIKQw8DCX-fsJLwkJLYo1jmRz_bd2d93R8gpQMYF4ALEkGfg8Qx1EWWB9iTIMFJZiD6sA8img2TGb-Zi3pLVHRcGABz4DHz76O7yi0rX9qgMV7i0FhaDnVU0_II1dK0mlSgLoyA6i2d2CxIYQ1jYFuN-J_KjeIqzHfEGSbuvNpCRB782ua_ffiVk_PdvbZL-F02P3n0aoC2yAuU2eR9Zu-dNqiJ7pENjGjgjRd-UOrLtk2toWUiuKa7tidkFHdK0egUUatOMU1N96-ASbK4JQxMMXB2zyhadoF3yTmw2DtRV9sksvpqOEq-tsuDdB3JgPIAARI6OhoIiDDMulyJimjPUm8yFLHAD0Aww6okYoADnUnEltJYsVxzOw3CH9MqqhF1CmdSFABksMYzi2TLKsQOlcnSxcCYECvZI347e4rlJpLHoBm7_j_cnZC2ZTsaL8XV6e0DWrUIdUlYdkp55qeEI_QGTH7tZ8AFVzbWc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+27th+International+Conference+on+Information+Fusion+%28FUSION%29&rft.atitle=Cross-Modal+Attention+for+Multimodal+Information+Fusion%3A+A+Novel+Approach+to+Attention+Deficit+Hyperactivity+Disorder+Detection&rft.au=Nash%2C+Christian&rft.au=Nair%2C+Rajesh&rft.au=Naqvi%2C+Syed+Mohsen&rft.date=2024-07-08&rft.pub=ISIF&rft.spage=1&rft.epage=6&rft_id=info:doi/10.23919%2FFUSION59988.2024.10706381&rft.externalDocID=10706381 |