Improving VGG-Style Convnet for JPEG Steganalysis

The steganalysis of JPEG images is a crucial area of research. Deep-learning based steganalysis methods have achieved superior detection performance. All methods for JPEG steganalysis rely on residual networks. Although the incorporation of residual connections has enhanced detection performance, it...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 4450 - 4454
Main Authors Yang, Zhuofan, Li, Qiushi, Luo, Shenghai, Tan, Shunquan, Li, Bin
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The steganalysis of JPEG images is a crucial area of research. Deep-learning based steganalysis methods have achieved superior detection performance. All methods for JPEG steganalysis rely on residual networks. Although the incorporation of residual connections has enhanced detection performance, it has also led to a notable increase in computational complexity. Furthermore, most of these methods are not complete end-to-end models. In their approaches, traditional hand-crafted filters are employed for image preprocessing. To avoid relying on residual connections and prior knowledge, we propose an end-to-end VGG-style ConvNet. During training, the model utilizes a multi-branch architecture, while it is transformed into a VGG-style ConvNet through structural reparameterization during inference. We conduct extensive experiments on ALASKA KAGGLE dataset and ALASKA II dataset, demonstrating that the proposed method achieves state-of-the-art results in the JPEG domain comparable to other CNN-based steganalyzers such as UCNet and EfficientNet, with clearly better convergence capacity and lower model complexity.
AbstractList The steganalysis of JPEG images is a crucial area of research. Deep-learning based steganalysis methods have achieved superior detection performance. All methods for JPEG steganalysis rely on residual networks. Although the incorporation of residual connections has enhanced detection performance, it has also led to a notable increase in computational complexity. Furthermore, most of these methods are not complete end-to-end models. In their approaches, traditional hand-crafted filters are employed for image preprocessing. To avoid relying on residual connections and prior knowledge, we propose an end-to-end VGG-style ConvNet. During training, the model utilizes a multi-branch architecture, while it is transformed into a VGG-style ConvNet through structural reparameterization during inference. We conduct extensive experiments on ALASKA KAGGLE dataset and ALASKA II dataset, demonstrating that the proposed method achieves state-of-the-art results in the JPEG domain comparable to other CNN-based steganalyzers such as UCNet and EfficientNet, with clearly better convergence capacity and lower model complexity.
Author Li, Qiushi
Yang, Zhuofan
Li, Bin
Tan, Shunquan
Luo, Shenghai
Author_xml – sequence: 1
  givenname: Zhuofan
  surname: Yang
  fullname: Yang, Zhuofan
  organization: Shenzhen University,College of Computer Science and Software Engineering,Shenzhen,China,518060
– sequence: 2
  givenname: Qiushi
  surname: Li
  fullname: Li, Qiushi
  organization: Shenzhen University,Guangdong Key Laboratory of Intelligent Information Processing,China
– sequence: 3
  givenname: Shenghai
  surname: Luo
  fullname: Luo, Shenghai
  organization: Shenzhen University,College of Computer Science and Software Engineering,Shenzhen,China,518060
– sequence: 4
  givenname: Shunquan
  surname: Tan
  fullname: Tan, Shunquan
  organization: Shenzhen University,College of Computer Science and Software Engineering,Shenzhen,China,518060
– sequence: 5
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: Shenzhen University,Guangdong Key Laboratory of Intelligent Information Processing,China
BookMark eNo1j81Kw0AUhUdRsK19AxfxAZLem_lfSqixUmghKu7KJLkpkXRSklDI2zegrg6cAx_fmbM733pi7BkhQgS72iQvWbYXRhgZxRCLCEEILdHcsKXV1nAJXEwj3rJZzLUN0cL3A5v3_Q8AGC3MjOHmdO7aS-2PwVeahtkwNhQkrb94GoKq7YL3_ToNsoGOzrtm7Ov-kd1Xrulp-ZcL9vm6_kjewu0unYy2YY1aDWHuVFzoXHBZGuO0Krgo0AoX56UqqwKdLrVTBogjyakkoSS30pYEkypWfMGefrk1ER3OXX1y3Xj4v8ivpcdHVg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP48485.2024.10447518
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350344851
EISSN 2379-190X
EndPage 4454
ExternalDocumentID 10447518
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-ba62c7b435d88a76c34c194a2bd6dfc1a7d7a680e31e52bde4653959de03791f3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:36:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-ba62c7b435d88a76c34c194a2bd6dfc1a7d7a680e31e52bde4653959de03791f3
PageCount 5
ParticipantIDs ieee_primary_10447518
PublicationCentury 2000
PublicationDate 2024-April-14
PublicationDateYYYYMMDD 2024-04-14
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.273928
Snippet The steganalysis of JPEG images is a crucial area of research. Deep-learning based steganalysis methods have achieved superior detection performance. All...
SourceID ieee
SourceType Publisher
StartPage 4450
SubjectTerms color images
Computational modeling
convolutional neural network(CNN)
Convolutional neural networks
Image preprocessing
Knowledge engineering
Signal processing
Steganalysis
Training
Transform coding
Title Improving VGG-Style Convnet for JPEG Steganalysis
URI https://ieeexplore.ieee.org/document/10447518
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LSwMxEIAH7UH04qvimxW87tpks0n2KKUPC5bCWumt5DEromxFtoL-epPttj5A8BYGQjKEZDKTzDcAl0a3kKDxPDzkIZPMhNpZvpAqKRTRVIsK4no75P0xG0ySSZ2sXuXCIGL1-Qwj36ze8u3MzH2ozO1wj6cjch3Wnee2SNZaHbtSMLkBFzVE8-qmfZ1lIze4TJwXSFm07PyjjEplRbrbMFyOv_g88hTNSx2Zj19oxn9PcAeaXwl7wWhlinZhDYs92PrGGtwHsgofBPe9XpiV788YuO5vBZaBu7kGg1GnF2QlPqiaU9KEcbdz1-6Hdb2E8JEIXoZacWqEdhcgK6US3MTMkJQpqi23uSFKWKG4bGFMMHFC9Gy1NEkttmKRkjw-gEYxK_AQAo00j41NlM5jJnSiqZHcUou5zXmu8QiaXvvpywKJMV0qfvyH_AQ2_SL4ZxjCTqFRvs7xzFnzUp9Xq_gJhUee0g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1bS8MwFMeDTvDy4m3i3Qq-ti5pmqSPMnZ1G4Nu4tvI5VRE6UQ6QT-9SdfNCwi-hQOHJITkn-Tk_ILQlVY1wKAdDw-YTwXVvrLK5xMpuMSKKF5AXPsD1h7T7n10XyarF7kwAFA8PoPAFYtYvpnqmbsqszPc4emwWEVrVvgjPE_XWi68glOxji5LjOZ1p36TJENbvYjsOZDQYOH-4yOVQkea22iwaMH8-chTMMtVoD9-wRn_3cQdVP1K2fOGSzHaRSuQ7aGtb7TBfYSXFwjeXavlJ_n7M3jW_S2D3LN7V687bLS8JIcHWZJKqmjcbIzqbb_8McF_xJzlvpKMaK7sFsgIITnTIdU4ppIow0yqseSGSyZqEGKIrBEcXS2OYgO1kMc4DQ9QJZtmcIg8BSQNtYmkSkPKVaSIFswQA6lJWargCFVd7ycvcyjGZNHx4z_sF2ijPer3Jr3O4PYEbboBcUEZTE9RJX-dwZnV9lydFyP6CQGMohs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Improving+VGG-Style+Convnet+for+JPEG+Steganalysis&rft.au=Yang%2C+Zhuofan&rft.au=Li%2C+Qiushi&rft.au=Luo%2C+Shenghai&rft.au=Tan%2C+Shunquan&rft.date=2024-04-14&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=4450&rft.epage=4454&rft_id=info:doi/10.1109%2FICASSP48485.2024.10447518&rft.externalDocID=10447518