Modeling of Biomedical Antennas through Forecasting DNN for the Enlarged Bandwidth

Recently, wireless medical technologies are growing day-by-day resulting in complex structures and topologies. Hence, advanced methods are required for designing and optimizing biomedical devices subject to high-dimensional parameter space. This paper is devoted to presenting an effective approach f...

Full description

Saved in:
Bibliographic Details
Published inUK, Europe, China Millimetre Waves and THZ Technology Workshop (Online) pp. 223 - 226
Main Authors Kouhalvandi, Lida, Alibakhshikenari, Mohammad, Livreri, Patrizia, Matekovits, Ladislau, Peter, Ildiko
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.08.2024
Subjects
Online AccessGet full text
ISSN2639-4537
DOI10.1109/UCMMT62975.2024.10737749

Cover

Loading…
Abstract Recently, wireless medical technologies are growing day-by-day resulting in complex structures and topologies. Hence, advanced methods are required for designing and optimizing biomedical devices subject to high-dimensional parameter space. This paper is devoted to presenting an effective approach for estimating frequency responses of an implanted, multiple-input multiple-output (MIMO) antenna through the deep neural network (DNN) in terms of S11, S12, and total active reflection coefficient (TARC) specifications. This impressive approach aims to facilitate the time-consuming simulations in large multi-frequency bands and concurrently reduce the dependency on the designer's experience. All the process is performed in an automated environment and the proposed method is verified by designing and optimizing an implanted MIMO antenna operating in frequency bands of 4.34-4.61 GHz, and 5.86-6.64 GHz. In this design, the Long Short-Term Memory (LSTM)-based DNN is trained for the frequency band between 3-5.8 GHz, and afterward the constructed DNN is employed for predicting the various antenna specifications for the future bandwidth of 5.8-8 GHz.
AbstractList Recently, wireless medical technologies are growing day-by-day resulting in complex structures and topologies. Hence, advanced methods are required for designing and optimizing biomedical devices subject to high-dimensional parameter space. This paper is devoted to presenting an effective approach for estimating frequency responses of an implanted, multiple-input multiple-output (MIMO) antenna through the deep neural network (DNN) in terms of S11, S12, and total active reflection coefficient (TARC) specifications. This impressive approach aims to facilitate the time-consuming simulations in large multi-frequency bands and concurrently reduce the dependency on the designer's experience. All the process is performed in an automated environment and the proposed method is verified by designing and optimizing an implanted MIMO antenna operating in frequency bands of 4.34-4.61 GHz, and 5.86-6.64 GHz. In this design, the Long Short-Term Memory (LSTM)-based DNN is trained for the frequency band between 3-5.8 GHz, and afterward the constructed DNN is employed for predicting the various antenna specifications for the future bandwidth of 5.8-8 GHz.
Author Matekovits, Ladislau
Livreri, Patrizia
Alibakhshikenari, Mohammad
Kouhalvandi, Lida
Peter, Ildiko
Author_xml – sequence: 1
  givenname: Lida
  surname: Kouhalvandi
  fullname: Kouhalvandi, Lida
  email: lida.kouhalvandi@ieee.org
  organization: Dogus University,Department of Electrical and Electronics Engineering,Istanbul,Turkey
– sequence: 2
  givenname: Mohammad
  surname: Alibakhshikenari
  fullname: Alibakhshikenari, Mohammad
  email: mohammad.alibakhshikenari@uc3m.es
  organization: Universidad Carlos III de Madrid, Leganés,Department of Signal Theory and Communications,Madrid,Spain,28911
– sequence: 3
  givenname: Patrizia
  surname: Livreri
  fullname: Livreri, Patrizia
  email: patrizia.livreri@unipa.it
  organization: University of Palermo, Palermo,Department of Engineering,Sicily,Italy,90128
– sequence: 4
  givenname: Ladislau
  surname: Matekovits
  fullname: Matekovits, Ladislau
  email: ladislau.matekovits@polito.it
  organization: Politecnico di Torino,Department of Electronics and Telecommunications,Turin,Italy
– sequence: 5
  givenname: Ildiko
  surname: Peter
  fullname: Peter, Ildiko
  email: ildiko.peter@umfst.ro
  organization: University of Medicine, Pharmacy, Science and Technology "George Emil Palade",Faculty of Engineering and Information Technology,Târgu-Mureş,Romania
BookMark eNo1kF1LwzAYhaMoOOf-gRf5A61J3rbJe7nNTYVtgmzXI-ajjXSJtBXx31tR4cC5eB7OxbkmFzFFRwjlLOec4d1hud3uK4GyzAUTRc6ZBCkLPCMzlKgAeAlMCHVOJqICzIoS5BWZ9f0bYwwEAwnVhLxsk3VtiDVNni5COjkbjG7pPA4uRt3ToenSR93Qdeqc0f3wo97vdtSnbmSOrmKru9pZutDRfgY7NDfk0uu2d7O_npLDerVfPmab54en5XyTBS6rIdPGaKxQKQREKxn3-Kq8KWzpYUS8LMFYZ0YyRgsrwSvQHJWT3iIwmJLb393gnDu-d-Gku6_j_w3wDek-VGc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/UCMMT62975.2024.10737749
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331530228
EISSN 2639-4537
EndPage 226
ExternalDocumentID 10737749
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-acca969889399d701f9b8fc4d5f3cca1553cdecd70d70a2d73f83a198e7fd9303
IEDL.DBID RIE
IngestDate Wed Jan 15 06:21:41 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-acca969889399d701f9b8fc4d5f3cca1553cdecd70d70a2d73f83a198e7fd9303
PageCount 4
ParticipantIDs ieee_primary_10737749
PublicationCentury 2000
PublicationDate 2024-Aug.-21
PublicationDateYYYYMMDD 2024-08-21
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-21
  day: 21
PublicationDecade 2020
PublicationTitle UK, Europe, China Millimetre Waves and THZ Technology Workshop (Online)
PublicationTitleAbbrev UCMMT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203736
Score 1.8904005
Snippet Recently, wireless medical technologies are growing day-by-day resulting in complex structures and topologies. Hence, advanced methods are required for...
SourceID ieee
SourceType Publisher
StartPage 223
SubjectTerms Antennas
Bandwidth
biomedical
deep neural network (DNN)
extended bandwidth
forecasting
implanted antenna
Long short term memory
long short-term memory (LSTM)
multiple-input multiple-output (MIMO) antenna
Predictive models
Reflection coefficient
Reflector antennas
Scattering parameters
Terahertz materials
Topology
Wireless communication
Title Modeling of Biomedical Antennas through Forecasting DNN for the Enlarged Bandwidth
URI https://ieeexplore.ieee.org/document/10737749
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uTz6pOPE3efA1tWmypnl0c2MIKyIb7G2k-YFD6cR1CP713nXdREEQ-lB6FEKO8N1d7ruPkBtlpJeqEEx5mTLJnWFadx2LQ2y0DEnmCizoj_N0NJUPs-6sIavXXBjvfd185iN8re_y3dKusVQGJ1wJCFd0i7Qgc9uQtXYFFZHEQuFVJG3maN5O--PxJEXqKOSBiYy2v_8QUqlxZHhA8u0KNu0jL9G6KiL7-Ws447-XeEg635Q9-rgDoyOy58tj8oRKZ8g3p8tAezXRHn1C77BvvTQr2qj0UBTotGaFLdD0Ps8pRLJg83RQvmKnuKM9U7qPhaueO2Q6HEz6I9aIKLAFV2nFDLhIpzqDuERrp2IedJEFK103CDChbJB13oIFHpM4JUImDNeZV8FpALgT0i6XpT8lFKCLSx8A9IOCPCc23qVJxg0PQVth1Rnp4IbM3zZzMubbvTj_4_sF2Ue_YIU24ZekXb2v_RVAfFVc1679AuG7pgs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_Da2jRp0xzd3Ji6FpENdhtpfuBQWnEdgn-9eV03URCEHEoelJBH-F5e3vc-hK64ZIbxnHrcsNhjREtPiEh7gQ2kYDZMdA4J_TSLB2N2P4kmDVm95sIYY-riM-PDZ_2Wr0u1gFSZO-GcunBFbKKtCNi4S7rWOqVCw4ByeIzETSfN63E3TUcxkEfdTTBk_uoHP6RUaiTp76JstYZlAcmLv6hyX33-as_470XuofY3aQ8_ruFoH22Y4gA9gdYZMM5xaXGnptqDV_ANVK4Xco4bnR4MEp1KzqEIGt9mGXaxrLMZ3CteoVZc444s9MdMV89tNO73Rt2B18goeDPC48qTzkkiFomLTITQPCBW5IlVTEeWOhMIByltlLO4IUPNqU2oJCIx3GrhIO4QtYqyMEcIO_AizFgH-5a7m04gjY7DhEhirVBU8WPUhg2Zvi07ZUxXe3Hyx_wl2h6M0uF0eJc9nKId8BHka0NyhlrV-8KcO8Cv8ovazV-6t6lT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=UK%2C+Europe%2C+China+Millimetre+Waves+and+THZ+Technology+Workshop+%28Online%29&rft.atitle=Modeling+of+Biomedical+Antennas+through+Forecasting+DNN+for+the+Enlarged+Bandwidth&rft.au=Kouhalvandi%2C+Lida&rft.au=Alibakhshikenari%2C+Mohammad&rft.au=Livreri%2C+Patrizia&rft.au=Matekovits%2C+Ladislau&rft.date=2024-08-21&rft.pub=IEEE&rft.eissn=2639-4537&rft.spage=223&rft.epage=226&rft_id=info:doi/10.1109%2FUCMMT62975.2024.10737749&rft.externalDocID=10737749