Modeling of Biomedical Antennas through Forecasting DNN for the Enlarged Bandwidth
Recently, wireless medical technologies are growing day-by-day resulting in complex structures and topologies. Hence, advanced methods are required for designing and optimizing biomedical devices subject to high-dimensional parameter space. This paper is devoted to presenting an effective approach f...
Saved in:
Published in | UK, Europe, China Millimetre Waves and THZ Technology Workshop (Online) pp. 223 - 226 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
21.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2639-4537 |
DOI | 10.1109/UCMMT62975.2024.10737749 |
Cover
Loading…
Abstract | Recently, wireless medical technologies are growing day-by-day resulting in complex structures and topologies. Hence, advanced methods are required for designing and optimizing biomedical devices subject to high-dimensional parameter space. This paper is devoted to presenting an effective approach for estimating frequency responses of an implanted, multiple-input multiple-output (MIMO) antenna through the deep neural network (DNN) in terms of S11, S12, and total active reflection coefficient (TARC) specifications. This impressive approach aims to facilitate the time-consuming simulations in large multi-frequency bands and concurrently reduce the dependency on the designer's experience. All the process is performed in an automated environment and the proposed method is verified by designing and optimizing an implanted MIMO antenna operating in frequency bands of 4.34-4.61 GHz, and 5.86-6.64 GHz. In this design, the Long Short-Term Memory (LSTM)-based DNN is trained for the frequency band between 3-5.8 GHz, and afterward the constructed DNN is employed for predicting the various antenna specifications for the future bandwidth of 5.8-8 GHz. |
---|---|
AbstractList | Recently, wireless medical technologies are growing day-by-day resulting in complex structures and topologies. Hence, advanced methods are required for designing and optimizing biomedical devices subject to high-dimensional parameter space. This paper is devoted to presenting an effective approach for estimating frequency responses of an implanted, multiple-input multiple-output (MIMO) antenna through the deep neural network (DNN) in terms of S11, S12, and total active reflection coefficient (TARC) specifications. This impressive approach aims to facilitate the time-consuming simulations in large multi-frequency bands and concurrently reduce the dependency on the designer's experience. All the process is performed in an automated environment and the proposed method is verified by designing and optimizing an implanted MIMO antenna operating in frequency bands of 4.34-4.61 GHz, and 5.86-6.64 GHz. In this design, the Long Short-Term Memory (LSTM)-based DNN is trained for the frequency band between 3-5.8 GHz, and afterward the constructed DNN is employed for predicting the various antenna specifications for the future bandwidth of 5.8-8 GHz. |
Author | Matekovits, Ladislau Livreri, Patrizia Alibakhshikenari, Mohammad Kouhalvandi, Lida Peter, Ildiko |
Author_xml | – sequence: 1 givenname: Lida surname: Kouhalvandi fullname: Kouhalvandi, Lida email: lida.kouhalvandi@ieee.org organization: Dogus University,Department of Electrical and Electronics Engineering,Istanbul,Turkey – sequence: 2 givenname: Mohammad surname: Alibakhshikenari fullname: Alibakhshikenari, Mohammad email: mohammad.alibakhshikenari@uc3m.es organization: Universidad Carlos III de Madrid, Leganés,Department of Signal Theory and Communications,Madrid,Spain,28911 – sequence: 3 givenname: Patrizia surname: Livreri fullname: Livreri, Patrizia email: patrizia.livreri@unipa.it organization: University of Palermo, Palermo,Department of Engineering,Sicily,Italy,90128 – sequence: 4 givenname: Ladislau surname: Matekovits fullname: Matekovits, Ladislau email: ladislau.matekovits@polito.it organization: Politecnico di Torino,Department of Electronics and Telecommunications,Turin,Italy – sequence: 5 givenname: Ildiko surname: Peter fullname: Peter, Ildiko email: ildiko.peter@umfst.ro organization: University of Medicine, Pharmacy, Science and Technology "George Emil Palade",Faculty of Engineering and Information Technology,Târgu-Mureş,Romania |
BookMark | eNo1kF1LwzAYhaMoOOf-gRf5A61J3rbJe7nNTYVtgmzXI-ajjXSJtBXx31tR4cC5eB7OxbkmFzFFRwjlLOec4d1hud3uK4GyzAUTRc6ZBCkLPCMzlKgAeAlMCHVOJqICzIoS5BWZ9f0bYwwEAwnVhLxsk3VtiDVNni5COjkbjG7pPA4uRt3ToenSR93Qdeqc0f3wo97vdtSnbmSOrmKru9pZutDRfgY7NDfk0uu2d7O_npLDerVfPmab54en5XyTBS6rIdPGaKxQKQREKxn3-Kq8KWzpYUS8LMFYZ0YyRgsrwSvQHJWT3iIwmJLb393gnDu-d-Gku6_j_w3wDek-VGc |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/UCMMT62975.2024.10737749 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798331530228 |
EISSN | 2639-4537 |
EndPage | 226 |
ExternalDocumentID | 10737749 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i176t-acca969889399d701f9b8fc4d5f3cca1553cdecd70d70a2d73f83a198e7fd9303 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 15 06:21:41 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-acca969889399d701f9b8fc4d5f3cca1553cdecd70d70a2d73f83a198e7fd9303 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10737749 |
PublicationCentury | 2000 |
PublicationDate | 2024-Aug.-21 |
PublicationDateYYYYMMDD | 2024-08-21 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug.-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | UK, Europe, China Millimetre Waves and THZ Technology Workshop (Online) |
PublicationTitleAbbrev | UCMMT |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003203736 |
Score | 1.8904005 |
Snippet | Recently, wireless medical technologies are growing day-by-day resulting in complex structures and topologies. Hence, advanced methods are required for... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 223 |
SubjectTerms | Antennas Bandwidth biomedical deep neural network (DNN) extended bandwidth forecasting implanted antenna Long short term memory long short-term memory (LSTM) multiple-input multiple-output (MIMO) antenna Predictive models Reflection coefficient Reflector antennas Scattering parameters Terahertz materials Topology Wireless communication |
Title | Modeling of Biomedical Antennas through Forecasting DNN for the Enlarged Bandwidth |
URI | https://ieeexplore.ieee.org/document/10737749 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uTz6pOPE3efA1tWmypnl0c2MIKyIb7G2k-YFD6cR1CP713nXdREEQ-lB6FEKO8N1d7ruPkBtlpJeqEEx5mTLJnWFadx2LQ2y0DEnmCizoj_N0NJUPs-6sIavXXBjvfd185iN8re_y3dKusVQGJ1wJCFd0i7Qgc9uQtXYFFZHEQuFVJG3maN5O--PxJEXqKOSBiYy2v_8QUqlxZHhA8u0KNu0jL9G6KiL7-Ws447-XeEg635Q9-rgDoyOy58tj8oRKZ8g3p8tAezXRHn1C77BvvTQr2qj0UBTotGaFLdD0Ps8pRLJg83RQvmKnuKM9U7qPhaueO2Q6HEz6I9aIKLAFV2nFDLhIpzqDuERrp2IedJEFK103CDChbJB13oIFHpM4JUImDNeZV8FpALgT0i6XpT8lFKCLSx8A9IOCPCc23qVJxg0PQVth1Rnp4IbM3zZzMubbvTj_4_sF2Ue_YIU24ZekXb2v_RVAfFVc1679AuG7pgs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_Da2jRp0xzd3Ji6FpENdhtpfuBQWnEdgn-9eV03URCEHEoelJBH-F5e3vc-hK64ZIbxnHrcsNhjREtPiEh7gQ2kYDZMdA4J_TSLB2N2P4kmDVm95sIYY-riM-PDZ_2Wr0u1gFSZO-GcunBFbKKtCNi4S7rWOqVCw4ByeIzETSfN63E3TUcxkEfdTTBk_uoHP6RUaiTp76JstYZlAcmLv6hyX33-as_470XuofY3aQ8_ruFoH22Y4gA9gdYZMM5xaXGnptqDV_ANVK4Xco4bnR4MEp1KzqEIGt9mGXaxrLMZ3CteoVZc444s9MdMV89tNO73Rt2B18goeDPC48qTzkkiFomLTITQPCBW5IlVTEeWOhMIByltlLO4IUPNqU2oJCIx3GrhIO4QtYqyMEcIO_AizFgH-5a7m04gjY7DhEhirVBU8WPUhg2Zvi07ZUxXe3Hyx_wl2h6M0uF0eJc9nKId8BHka0NyhlrV-8KcO8Cv8ovazV-6t6lT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=UK%2C+Europe%2C+China+Millimetre+Waves+and+THZ+Technology+Workshop+%28Online%29&rft.atitle=Modeling+of+Biomedical+Antennas+through+Forecasting+DNN+for+the+Enlarged+Bandwidth&rft.au=Kouhalvandi%2C+Lida&rft.au=Alibakhshikenari%2C+Mohammad&rft.au=Livreri%2C+Patrizia&rft.au=Matekovits%2C+Ladislau&rft.date=2024-08-21&rft.pub=IEEE&rft.eissn=2639-4537&rft.spage=223&rft.epage=226&rft_id=info:doi/10.1109%2FUCMMT62975.2024.10737749&rft.externalDocID=10737749 |