Trajectory Tracking Multi-mode Predictive Control Based on Soft-switching for Unmanned Surface Vehicle
The unmanned surface vehicle (USV) plays a vital role in ocean exploration and utilization. Its primary tasks include navigating designated routes and safely avoiding obstacles in complex environments, ensuring efficient and secure arrival at destinations. This paper proposes a soft-switching-based...
Saved in:
Published in | Chinese Control Conference pp. 2819 - 2825 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
Technical Committee on Control Theory, Chinese Association of Automation
28.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The unmanned surface vehicle (USV) plays a vital role in ocean exploration and utilization. Its primary tasks include navigating designated routes and safely avoiding obstacles in complex environments, ensuring efficient and secure arrival at destinations. This paper proposes a soft-switching-based multi-mode predictive control method. Specifically, A two-stage control model is defined to categorize the control modes, and a nonlinear model predictive controller (NMPC) embedding relevant obstacle avoidance constraints is developed. Then combined with NMPC framework, a sigmoid function is introduced to handle the multi-mode control problem. In addition, we apply the proposed algorithm successfully to the trajectory tracking control of USV. Simulation results show the strength and reliability of the proposed algorithm, which reduces the errors and improves the control accuracy effectively. |
---|---|
AbstractList | The unmanned surface vehicle (USV) plays a vital role in ocean exploration and utilization. Its primary tasks include navigating designated routes and safely avoiding obstacles in complex environments, ensuring efficient and secure arrival at destinations. This paper proposes a soft-switching-based multi-mode predictive control method. Specifically, A two-stage control model is defined to categorize the control modes, and a nonlinear model predictive controller (NMPC) embedding relevant obstacle avoidance constraints is developed. Then combined with NMPC framework, a sigmoid function is introduced to handle the multi-mode control problem. In addition, we apply the proposed algorithm successfully to the trajectory tracking control of USV. Simulation results show the strength and reliability of the proposed algorithm, which reduces the errors and improves the control accuracy effectively. |
Author | Dong, Shanling Duan, Kunpeng Liu, Meiqin Zhang, Senlin |
Author_xml | – sequence: 1 givenname: Kunpeng surname: Duan fullname: Duan, Kunpeng email: kunpengduan23@zju.edu.cn organization: Zhejiang University,College of Electrical Engineering,Hangzhou,China,310027 – sequence: 2 givenname: Shanling surname: Dong fullname: Dong, Shanling email: shanlingdong28@zju.edu.cn organization: Zhejiang University,College of Electrical Engineering,Hangzhou,China,310027 – sequence: 3 givenname: Meiqin surname: Liu fullname: Liu, Meiqin email: liumeiqin@zju.edu.cn organization: Zhejiang University,College of Electrical Engineering,Hangzhou,China,310027 – sequence: 4 givenname: Senlin surname: Zhang fullname: Zhang, Senlin email: slzhang@zju.edu.cn organization: Zhejiang University,College of Electrical Engineering,Hangzhou,China,310027 |
BookMark | eNo1kF9LwzAUxaMouE2_gWC-QGv-tGnyqMWpMFFY9XWk6Y3L7BJJM2Xf3g716Vw4v3u550zRiQ8eELqiJGdcUXVd17XgtBI5I6zIKRGCMaKO0FRJWZWSlrI8RhOqeJGNlDxD02HYECKIonyCbBP1BkwKcY_H0Xw4_46fdn1y2TZ0gF8idM4k9wW4Dj7F0ONbPUCHg8fLYFM2fLtk1octGyJ-9Vvt_Wgvd9FqA_gN1s70cI5Ore4HuPjTGWrmd039kC2e7x_rm0Xmxt9SpnXJuC3AAivsGK7VleatkUaUJVMtk1Rz0pquGKFDNGG0bGknuGilsJzP0OXvWQcAq8_otjruV_-d8B-1xFnm |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/CCC63176.2024.10662209 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9887581585 9789887581581 |
EISSN | 1934-1768 |
EndPage | 2825 |
ExternalDocumentID | 10662209 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i176t-aa523f4efe24f919ba7a3bc8c65529b281a30bcd43f458156ca8b1d636b86f33 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:00:25 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-aa523f4efe24f919ba7a3bc8c65529b281a30bcd43f458156ca8b1d636b86f33 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10662209 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-28 |
PublicationDateYYYYMMDD | 2024-07-28 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Chinese Control Conference |
PublicationTitleAbbrev | CCC |
PublicationYear | 2024 |
Publisher | Technical Committee on Control Theory, Chinese Association of Automation |
Publisher_xml | – name: Technical Committee on Control Theory, Chinese Association of Automation |
SSID | ssj0060913 |
Score | 2.2777882 |
Snippet | The unmanned surface vehicle (USV) plays a vital role in ocean exploration and utilization. Its primary tasks include navigating designated routes and safely... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2819 |
SubjectTerms | model predictive control multi-mode control Planning Prediction algorithms Predictive models Reliability Sea surface Simulation Trajectory tracking Unmanned surface vehicle |
Title | Trajectory Tracking Multi-mode Predictive Control Based on Soft-switching for Unmanned Surface Vehicle |
URI | https://ieeexplore.ieee.org/document/10662209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6J33xa-I3efC1dUvTNH21OIbgELbJ3kaSXnCKncwW0b_eu3bzCwTfQpuQcmnuLpff746xcx1ZEIlLAx9LGUiIJe45kwReJYAvhBJAccibgeqP5fUknizJ6jUXBgBq8BmE1Kzv8vO5qyhUhjtcKSGIrreOJ7eGrLVSu4oSXDYALhGl3fQiyzKFxpFgCEKGq6E_iqjUNqS3xQar2RvoyGNYlTZ0778SM_7787ZZ-4uux28_DdEOW4Nil21-yzS4xzzapIc6QP_GsekoQM5r8m1AtXBwOF3YkOrjWQNe55do33I-L_gQNXXw8jora9glRy-Xj4snQwqaD6uFNzj9HdzTD9hmo97VKOsHyxILwQxFUwbG4EHUS_AgpEepWZOYyDrtVByL1ArdNVHHulxip5gSyzijbTdXkbJa-SjaZ61iXsAB40nHJZCDlQ5dGp0bkwN5K4lWRjrj4ZC1SWLT5yaJxnQlrKM_nh-zDVo4CqMKfcJa5aKCU7T_pT2r1_0DdlaxJA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHIALryHe5MC1ZU3TtLtSMQ3YJqRtaLcpSR0xEB0anRD8eux24yUhcYvaRqncxJ_rfJ_D2FkSGhCxbXguktKTEElcczr2nIoBbwglgPKQna5qDeT1MBrOxeqlFgYASvIZ-NQs9_KziZ1RqgxXuFJCkFxvBYE_Ciq51sLxKipxWVG4RNgIGudpmiqERyIiCOkvOv84RqVEkeYG6y7Gr8gjj_6sML59_1Wa8d8vuMlqX4I9fvsJRVtsCfJttv6t1uAOc4hKD2WK_o1j01KKnJfyW49Ow8HutGVDzo-nFX2dXyDCZXyS8x76au_ldVyUxEuOcS4f5E-aXDTvzaZO4_B3cE9TsMb6zct-2vLmhyx4YzRN4WmNv6JOggMhHVrN6FiHxiZWRZFoGJEEOqwbm0l8KKLSMlYnJshUqEyiXBjusuV8ksMe43HdxpCBkRaDmiTTOgOKV-JEaWm1g31WI4uNnqsyGqOFsQ7-uH7KVlv9TnvUvureHLI1-oiUVBXJEVsupjM4xmigMCflHPgA4De0bQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Trajectory+Tracking+Multi-mode+Predictive+Control+Based+on+Soft-switching+for+Unmanned+Surface+Vehicle&rft.au=Duan%2C+Kunpeng&rft.au=Dong%2C+Shanling&rft.au=Liu%2C+Meiqin&rft.au=Zhang%2C+Senlin&rft.date=2024-07-28&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=2819&rft.epage=2825&rft_id=info:doi/10.23919%2FCCC63176.2024.10662209&rft.externalDocID=10662209 |