PSD-CNN Approach for Subject Independent Dementia Recognition from EEG Signals

Several studies of EEG-based dementia classification were conducted on the subject-dependent scenarios, which could not be a common ground truth for the new subjects, as EEG has high variability across different subjects. Thus, this work aims to propose our method based on power spectral features an...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... International Joint Conference on Computer Science and Software Engineering (Online) pp. 588 - 594
Main Authors Kongwudhikunakorn, Supavit, Kiatthaveephong, Suktipol, Thanontip, Kamonwan, Leelaarporn, Pitshaporn, Dujada, Pathitta, Yagi, Tohru, Senanarong, Vorapun, Saengmolee, Wanumaidah, Wilaiprasitporn, Theerawit
Format Conference Proceeding
LanguageEnglish
Published IEEE 19.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several studies of EEG-based dementia classification were conducted on the subject-dependent scenarios, which could not be a common ground truth for the new subjects, as EEG has high variability across different subjects. Thus, this work aims to propose our method based on power spectral features and convolutional neural network compared to the state-of-the-art deep learning and machine learning techniques for subject-independent dementia recognition with a leave-two-out cross-validation approach. All of the methods tested their binary classification performance on two datasets: (i) normal vs. dementia and (ii) normal vs. abnormal groups across three tasks (i.e., eyes-closed, eyes-opened, and mental imagery). The proposed method accomplished the highest performance against the state-of-the-art methods on both datasets. The eyes-closed provided the best classification result at an accuracy of 0.89 ± 0.03. Our result presents a promising future to apply the PSD-CNN method for dementia screening application.
AbstractList Several studies of EEG-based dementia classification were conducted on the subject-dependent scenarios, which could not be a common ground truth for the new subjects, as EEG has high variability across different subjects. Thus, this work aims to propose our method based on power spectral features and convolutional neural network compared to the state-of-the-art deep learning and machine learning techniques for subject-independent dementia recognition with a leave-two-out cross-validation approach. All of the methods tested their binary classification performance on two datasets: (i) normal vs. dementia and (ii) normal vs. abnormal groups across three tasks (i.e., eyes-closed, eyes-opened, and mental imagery). The proposed method accomplished the highest performance against the state-of-the-art methods on both datasets. The eyes-closed provided the best classification result at an accuracy of 0.89 ± 0.03. Our result presents a promising future to apply the PSD-CNN method for dementia screening application.
Author Senanarong, Vorapun
Dujada, Pathitta
Kiatthaveephong, Suktipol
Yagi, Tohru
Saengmolee, Wanumaidah
Wilaiprasitporn, Theerawit
Leelaarporn, Pitshaporn
Kongwudhikunakorn, Supavit
Thanontip, Kamonwan
Author_xml – sequence: 1
  givenname: Supavit
  surname: Kongwudhikunakorn
  fullname: Kongwudhikunakorn, Supavit
  email: supavit.k_s19@vistec.ac.th
  organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand
– sequence: 2
  givenname: Suktipol
  surname: Kiatthaveephong
  fullname: Kiatthaveephong, Suktipol
  email: suktipol.k_s20@vistec.ac.th
  organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand
– sequence: 3
  givenname: Kamonwan
  surname: Thanontip
  fullname: Thanontip, Kamonwan
  email: k.thanontip@gmail.com
  organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand
– sequence: 4
  givenname: Pitshaporn
  surname: Leelaarporn
  fullname: Leelaarporn, Pitshaporn
  email: pitshaporn.leelaarporn@uq.net.au
  organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand
– sequence: 5
  givenname: Pathitta
  surname: Dujada
  fullname: Dujada, Pathitta
  email: d.pathitta@gmail.com
  organization: Siriraj Hospital, Mahidol University,Faculty of Medicine,Bangkok,Thailand
– sequence: 6
  givenname: Tohru
  surname: Yagi
  fullname: Yagi, Tohru
  email: yagi.t.ab@m.titech.ac.jp
  organization: Tokyo Institute of Technology,Department of Mechanical Engineering,Tokyo,Japan
– sequence: 7
  givenname: Vorapun
  surname: Senanarong
  fullname: Senanarong, Vorapun
  email: vorapun.sen@mahidol.ac.th
  organization: Siriraj Hospital, Mahidol University,Faculty of Medicine,Bangkok,Thailand
– sequence: 8
  givenname: Wanumaidah
  surname: Saengmolee
  fullname: Saengmolee, Wanumaidah
  email: wanumaidahs_pro@vistec.ac.th
  organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand
– sequence: 9
  givenname: Theerawit
  surname: Wilaiprasitporn
  fullname: Wilaiprasitporn, Theerawit
  email: theerawit.w@vistec.ac.th
  organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand
BookMark eNo10MFOwzAQBFCDQKKU_gEH_0DKrp2s7WOVhlJUFUTgXDmOU1xRJ0rDgb9vJOAy7zYazS27im30jHGEOSKYh-e8LAtCofRcgEjnCIRSSbhgM6OMlhlIjYrSSzYRlIqEMmVu2Ox0OgCARG0MmgnbvpbLJN9u-aLr-ta6T960PS-_q4N3A1_H2nd-jDjwpT-OBMvfvGv3MQyhjbzp2yMvihUvwz7ar9Mdu25G_OzPKft4LN7zp2Tzslrni00SxklDYgEykgi1bqhWDtF6dGmlUilrhSBcBoKqColERV5mDoi81VVDjkBLL6fs_rc3eO93XR-Otv_Z_V8gz2P9UOQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/JCSSE61278.2024.10613730
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350381764
EISSN 2642-6579
EndPage 594
ExternalDocumentID 10613730
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-a0056310d8f6d7c11ae1c4b7433d7102c5026bb1662b6e35c066ea8bf6c6083e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:35:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-a0056310d8f6d7c11ae1c4b7433d7102c5026bb1662b6e35c066ea8bf6c6083e3
PageCount 7
ParticipantIDs ieee_primary_10613730
PublicationCentury 2000
PublicationDate 2024-June-19
PublicationDateYYYYMMDD 2024-06-19
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-19
  day: 19
PublicationDecade 2020
PublicationTitle Proceedings of the ... International Joint Conference on Computer Science and Software Engineering (Online)
PublicationTitleAbbrev JCSSE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189919
Score 1.8839974
Snippet Several studies of EEG-based dementia classification were conducted on the subject-dependent scenarios, which could not be a common ground truth for the new...
SourceID ieee
SourceType Publisher
StartPage 588
SubjectTerms Accuracy
Computer science
Convolutional neural networks
Deep learning
Dementia
Electroencephalography
Medical services
Mild Cognitive Impairment
Power Spec-tral Density
Predictive models
Title PSD-CNN Approach for Subject Independent Dementia Recognition from EEG Signals
URI https://ieeexplore.ieee.org/document/10613730
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uTz7Ny8Q7efA1nUlzaR9l65wDy7AO9jaaNJEhdEO6F3-9J107URB8K4VAyKXnO6ff9x2E7gS1kYHNhTQ1dIQzbknuYkYcZD5UM62F8mrk51RO5ny6EItGrF5rYay1NfnMBv6x_pdfrM3Wl8oGPn0J4Uh2UAcyt51Ya19QgcMJWCdu2Tr38WA6zLIEIrjyFC7Gg3b4j0YqdRwZ91DazmBHH3kPtpUOzOcvc8Z_T_EI9b8le3i2D0bH6MCWJ6jX9mzAzRU-ReksG5FhmuKHxkwcA2rF8Pnw9Rj8tG-KW-FRXThc5fil5RitS-zVKDhJHnG2evPOy300HyevwwlpeiqQFVWyIrn3_gRIV0ROFspQmltquAYcERYebBgBSZnWVEqmpQ2FAUhi80g7aSSgNRueoW65Lu05wlxJreJIGmEdd8JELI-8G31sFAxh5gL1_fosNzvbjGW7NJd_vL9Ch36bPA-LxteoW31s7Q1E_Erf1jv9BaeXqGY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB20HvRUPyp-uwevSd1NdpMcpU1taxuKaaG3kt1sShFSkfTir3c2TSoKgrcQSFj2I_Nm8t4bgAdOta9wcTFNdTLLZa62kixgVoaZD5VMSu4ZNfI4Ev2ZO5zzeSVWL7UwWuuSfKZtc1n-y0_XamNKZW2Tvji4JffhAAM_Z1u51q6kgtsT0U5Q83Ueg_awE8chxnDPkLiYa9cv-NFKpYwkvSZE9Ri2BJI3e1NIW33-smf89yCPofUt2iOTXTg6gT2dn0Kz7tpAqkN8BtEk7lqdKCJPlZ04QdxK8ANiKjJksGuLW5BuWTpcJeS1Zhmtc2L0KCQMn0m8Whrv5RbMeuG007eqrgrWinqisBLj_omgLvUzkXqK0kRT5UpEEk5q4IbimJZJSYVgUmiHKwQlOvFlJpRAvKadc2jk61xfAHE9Ib3AF4rrzM248lniGz_6QHn4CFOX0DLzs3jfGmcs6qm5-uP-PRz2p-PRYjSIXq7hyCyZYWXR4AYaxcdG32L8L-RduepfpV2rsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+International+Joint+Conference+on+Computer+Science+and+Software+Engineering+%28Online%29&rft.atitle=PSD-CNN+Approach+for+Subject+Independent+Dementia+Recognition+from+EEG+Signals&rft.au=Kongwudhikunakorn%2C+Supavit&rft.au=Kiatthaveephong%2C+Suktipol&rft.au=Thanontip%2C+Kamonwan&rft.au=Leelaarporn%2C+Pitshaporn&rft.date=2024-06-19&rft.pub=IEEE&rft.eissn=2642-6579&rft.spage=588&rft.epage=594&rft_id=info:doi/10.1109%2FJCSSE61278.2024.10613730&rft.externalDocID=10613730