PSD-CNN Approach for Subject Independent Dementia Recognition from EEG Signals
Several studies of EEG-based dementia classification were conducted on the subject-dependent scenarios, which could not be a common ground truth for the new subjects, as EEG has high variability across different subjects. Thus, this work aims to propose our method based on power spectral features an...
Saved in:
Published in | Proceedings of the ... International Joint Conference on Computer Science and Software Engineering (Online) pp. 588 - 594 |
---|---|
Main Authors | , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
19.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several studies of EEG-based dementia classification were conducted on the subject-dependent scenarios, which could not be a common ground truth for the new subjects, as EEG has high variability across different subjects. Thus, this work aims to propose our method based on power spectral features and convolutional neural network compared to the state-of-the-art deep learning and machine learning techniques for subject-independent dementia recognition with a leave-two-out cross-validation approach. All of the methods tested their binary classification performance on two datasets: (i) normal vs. dementia and (ii) normal vs. abnormal groups across three tasks (i.e., eyes-closed, eyes-opened, and mental imagery). The proposed method accomplished the highest performance against the state-of-the-art methods on both datasets. The eyes-closed provided the best classification result at an accuracy of 0.89 ± 0.03. Our result presents a promising future to apply the PSD-CNN method for dementia screening application. |
---|---|
AbstractList | Several studies of EEG-based dementia classification were conducted on the subject-dependent scenarios, which could not be a common ground truth for the new subjects, as EEG has high variability across different subjects. Thus, this work aims to propose our method based on power spectral features and convolutional neural network compared to the state-of-the-art deep learning and machine learning techniques for subject-independent dementia recognition with a leave-two-out cross-validation approach. All of the methods tested their binary classification performance on two datasets: (i) normal vs. dementia and (ii) normal vs. abnormal groups across three tasks (i.e., eyes-closed, eyes-opened, and mental imagery). The proposed method accomplished the highest performance against the state-of-the-art methods on both datasets. The eyes-closed provided the best classification result at an accuracy of 0.89 ± 0.03. Our result presents a promising future to apply the PSD-CNN method for dementia screening application. |
Author | Senanarong, Vorapun Dujada, Pathitta Kiatthaveephong, Suktipol Yagi, Tohru Saengmolee, Wanumaidah Wilaiprasitporn, Theerawit Leelaarporn, Pitshaporn Kongwudhikunakorn, Supavit Thanontip, Kamonwan |
Author_xml | – sequence: 1 givenname: Supavit surname: Kongwudhikunakorn fullname: Kongwudhikunakorn, Supavit email: supavit.k_s19@vistec.ac.th organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand – sequence: 2 givenname: Suktipol surname: Kiatthaveephong fullname: Kiatthaveephong, Suktipol email: suktipol.k_s20@vistec.ac.th organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand – sequence: 3 givenname: Kamonwan surname: Thanontip fullname: Thanontip, Kamonwan email: k.thanontip@gmail.com organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand – sequence: 4 givenname: Pitshaporn surname: Leelaarporn fullname: Leelaarporn, Pitshaporn email: pitshaporn.leelaarporn@uq.net.au organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand – sequence: 5 givenname: Pathitta surname: Dujada fullname: Dujada, Pathitta email: d.pathitta@gmail.com organization: Siriraj Hospital, Mahidol University,Faculty of Medicine,Bangkok,Thailand – sequence: 6 givenname: Tohru surname: Yagi fullname: Yagi, Tohru email: yagi.t.ab@m.titech.ac.jp organization: Tokyo Institute of Technology,Department of Mechanical Engineering,Tokyo,Japan – sequence: 7 givenname: Vorapun surname: Senanarong fullname: Senanarong, Vorapun email: vorapun.sen@mahidol.ac.th organization: Siriraj Hospital, Mahidol University,Faculty of Medicine,Bangkok,Thailand – sequence: 8 givenname: Wanumaidah surname: Saengmolee fullname: Saengmolee, Wanumaidah email: wanumaidahs_pro@vistec.ac.th organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand – sequence: 9 givenname: Theerawit surname: Wilaiprasitporn fullname: Wilaiprasitporn, Theerawit email: theerawit.w@vistec.ac.th organization: Vidyasirimedhi Institute of Science & Technology (VISTEC),Rayong,Thailand |
BookMark | eNo10MFOwzAQBFCDQKKU_gEH_0DKrp2s7WOVhlJUFUTgXDmOU1xRJ0rDgb9vJOAy7zYazS27im30jHGEOSKYh-e8LAtCofRcgEjnCIRSSbhgM6OMlhlIjYrSSzYRlIqEMmVu2Ox0OgCARG0MmgnbvpbLJN9u-aLr-ta6T960PS-_q4N3A1_H2nd-jDjwpT-OBMvfvGv3MQyhjbzp2yMvihUvwz7ar9Mdu25G_OzPKft4LN7zp2Tzslrni00SxklDYgEykgi1bqhWDtF6dGmlUilrhSBcBoKqColERV5mDoi81VVDjkBLL6fs_rc3eO93XR-Otv_Z_V8gz2P9UOQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/JCSSE61278.2024.10613730 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798350381764 |
EISSN | 2642-6579 |
EndPage | 594 |
ExternalDocumentID | 10613730 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i176t-a0056310d8f6d7c11ae1c4b7433d7102c5026bb1662b6e35c066ea8bf6c6083e3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:35:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-a0056310d8f6d7c11ae1c4b7433d7102c5026bb1662b6e35c066ea8bf6c6083e3 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10613730 |
PublicationCentury | 2000 |
PublicationDate | 2024-June-19 |
PublicationDateYYYYMMDD | 2024-06-19 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... International Joint Conference on Computer Science and Software Engineering (Online) |
PublicationTitleAbbrev | JCSSE |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003189919 |
Score | 1.8839974 |
Snippet | Several studies of EEG-based dementia classification were conducted on the subject-dependent scenarios, which could not be a common ground truth for the new... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 588 |
SubjectTerms | Accuracy Computer science Convolutional neural networks Deep learning Dementia Electroencephalography Medical services Mild Cognitive Impairment Power Spec-tral Density Predictive models |
Title | PSD-CNN Approach for Subject Independent Dementia Recognition from EEG Signals |
URI | https://ieeexplore.ieee.org/document/10613730 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uTz7Ny8Q7efA1nUlzaR9l65wDy7AO9jaaNJEhdEO6F3-9J107URB8K4VAyKXnO6ff9x2E7gS1kYHNhTQ1dIQzbknuYkYcZD5UM62F8mrk51RO5ny6EItGrF5rYay1NfnMBv6x_pdfrM3Wl8oGPn0J4Uh2UAcyt51Ya19QgcMJWCdu2Tr38WA6zLIEIrjyFC7Gg3b4j0YqdRwZ91DazmBHH3kPtpUOzOcvc8Z_T_EI9b8le3i2D0bH6MCWJ6jX9mzAzRU-ReksG5FhmuKHxkwcA2rF8Pnw9Rj8tG-KW-FRXThc5fil5RitS-zVKDhJHnG2evPOy300HyevwwlpeiqQFVWyIrn3_gRIV0ROFspQmltquAYcERYebBgBSZnWVEqmpQ2FAUhi80g7aSSgNRueoW65Lu05wlxJreJIGmEdd8JELI-8G31sFAxh5gL1_fosNzvbjGW7NJd_vL9Ch36bPA-LxteoW31s7Q1E_Erf1jv9BaeXqGY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB20HvRUPyp-uwevSd1NdpMcpU1taxuKaaG3kt1sShFSkfTir3c2TSoKgrcQSFj2I_Nm8t4bgAdOta9wcTFNdTLLZa62kixgVoaZD5VMSu4ZNfI4Ev2ZO5zzeSVWL7UwWuuSfKZtc1n-y0_XamNKZW2Tvji4JffhAAM_Z1u51q6kgtsT0U5Q83Ueg_awE8chxnDPkLiYa9cv-NFKpYwkvSZE9Ri2BJI3e1NIW33-smf89yCPofUt2iOTXTg6gT2dn0Kz7tpAqkN8BtEk7lqdKCJPlZ04QdxK8ANiKjJksGuLW5BuWTpcJeS1Zhmtc2L0KCQMn0m8Whrv5RbMeuG007eqrgrWinqisBLj_omgLvUzkXqK0kRT5UpEEk5q4IbimJZJSYVgUmiHKwQlOvFlJpRAvKadc2jk61xfAHE9Ib3AF4rrzM248lniGz_6QHn4CFOX0DLzs3jfGmcs6qm5-uP-PRz2p-PRYjSIXq7hyCyZYWXR4AYaxcdG32L8L-RduepfpV2rsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+International+Joint+Conference+on+Computer+Science+and+Software+Engineering+%28Online%29&rft.atitle=PSD-CNN+Approach+for+Subject+Independent+Dementia+Recognition+from+EEG+Signals&rft.au=Kongwudhikunakorn%2C+Supavit&rft.au=Kiatthaveephong%2C+Suktipol&rft.au=Thanontip%2C+Kamonwan&rft.au=Leelaarporn%2C+Pitshaporn&rft.date=2024-06-19&rft.pub=IEEE&rft.eissn=2642-6579&rft.spage=588&rft.epage=594&rft_id=info:doi/10.1109%2FJCSSE61278.2024.10613730&rft.externalDocID=10613730 |