A New ADMM-Based Hyperspectral Unmixing Algorithm Associated with a Linear Mixing Model Addressing Spectral Variability with a Multiplicative Structure

In this paper, we propose an approach based on an Alternating Direction Method of Multipliers (ADMM) to unmix hyperspectral data using a recently proposed linear mixing model in which the spectral variability phenomenon is spectrally modeled in a multiplicative manner. This model allows for pixel-wi...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Geoscience and Remote Sensing Symposium proceedings pp. 7710 - 7713
Main Authors Benhalouche, Fatima Zohra, Karoui, Moussa Sofiane, Deville, Yannick
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.07.2024
Subjects
Online AccessGet full text
ISSN2153-7003
DOI10.1109/IGARSS53475.2024.10640925

Cover

Abstract In this paper, we propose an approach based on an Alternating Direction Method of Multipliers (ADMM) to unmix hyperspectral data using a recently proposed linear mixing model in which the spectral variability phenomenon is spectrally modeled in a multiplicative manner. This model allows for pixel-wise variation of the endmembers, resulting in different versions of the reference component spectra being considered in each pixel of the image. The proposed ADMM-based unmixing algorithm involves new iterative update rules. The investigation also evaluates the performance of the designed algorithm against some literature ones previously proposed. To this end, experiments using synthetic hyperspectral data are carried out. Overall, the obtained results prove that the proposed algorithm is very attractive for hyperspectral unmixing taking the spectral variability phenomenon into account.
AbstractList In this paper, we propose an approach based on an Alternating Direction Method of Multipliers (ADMM) to unmix hyperspectral data using a recently proposed linear mixing model in which the spectral variability phenomenon is spectrally modeled in a multiplicative manner. This model allows for pixel-wise variation of the endmembers, resulting in different versions of the reference component spectra being considered in each pixel of the image. The proposed ADMM-based unmixing algorithm involves new iterative update rules. The investigation also evaluates the performance of the designed algorithm against some literature ones previously proposed. To this end, experiments using synthetic hyperspectral data are carried out. Overall, the obtained results prove that the proposed algorithm is very attractive for hyperspectral unmixing taking the spectral variability phenomenon into account.
Author Benhalouche, Fatima Zohra
Deville, Yannick
Karoui, Moussa Sofiane
Author_xml – sequence: 1
  givenname: Fatima Zohra
  surname: Benhalouche
  fullname: Benhalouche, Fatima Zohra
  organization: Agence Spatiale Algérienne,Centre des Techniques Spatiales,Arzew,Algeria
– sequence: 2
  givenname: Moussa Sofiane
  surname: Karoui
  fullname: Karoui, Moussa Sofiane
  organization: Agence Spatiale Algérienne,Centre des Techniques Spatiales,Arzew,Algeria
– sequence: 3
  givenname: Yannick
  surname: Deville
  fullname: Deville, Yannick
  organization: Université de Toulouse, UPS, CNRS, OMP, CNES,IRAP,Toulouse,France
BookMark eNo1kEtOwzAYhA0Cibb0BizMAVL8yMvLUKCt1IBEKNvKsf8UozSJbJfSk3BdgkpXMxp9M4sZooumbQChW0omlBJxt5hlr0UR8TCJJoywcEJJHBLBojM0FolIeUR4TDiLztGA0YgHCSH8Cg2d--xNyggZoJ8MP8MeZw95HtxLBxrPDx1Y14HyVtZ41WzNt2k2OKs3rTX-Y4sz51plpO_ZfR9giZemAWlxfiTzVkONM60tOPcXFKexd2mNLE1t_OFUzXe1N11tlPTmC3Dh7U75nYVrdFnJ2sH4X0do9fT4Np0Hy5fZYpotA0OT2AdCVGkilah0mCSMlSKulChDqokSAgSjSshYEJmmMmS6rLSQtCQVD1XcX8VTPkI3x10DAOvOmq20h_XpSP4Lq5xtHw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS53475.2024.10640925
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9798350360325
EISSN 2153-7003
EndPage 7713
ExternalDocumentID 10640925
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-99f87ac9fd47722b96fc9b41d0c99e921c9a690a88a42dbfd9a1b0f34c6640383
IEDL.DBID RIE
IngestDate Wed Aug 27 02:03:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-99f87ac9fd47722b96fc9b41d0c99e921c9a690a88a42dbfd9a1b0f34c6640383
PageCount 4
ParticipantIDs ieee_primary_10640925
PublicationCentury 2000
PublicationDate 2024-July-7
PublicationDateYYYYMMDD 2024-07-07
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-7
  day: 07
PublicationDecade 2020
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.8860419
Snippet In this paper, we propose an approach based on an Alternating Direction Method of Multipliers (ADMM) to unmix hyperspectral data using a recently proposed...
SourceID ieee
SourceType Publisher
StartPage 7710
SubjectTerms Adaptation models
alternating direction method of multipliers
Convex functions
Data models
Geoscience and remote sensing
Hyperspectral data
Hyperspectral imaging
Iterative algorithms
linear mixing model
linear spectral unmixing
Optimization
spectral variability
Title A New ADMM-Based Hyperspectral Unmixing Algorithm Associated with a Linear Mixing Model Addressing Spectral Variability with a Multiplicative Structure
URI https://ieeexplore.ieee.org/document/10640925
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46UHzyNvFOBF9be0mb5rFetil0iHWyt5Fbdbh1Mjpx_hH_rqfpqigIvpWQ0zbnnOTkS84FoVPANjxwNLVoBhpMQulaHMySRZTmLgmoE5nb86Qbdnrkph_0F8HqJhZGa22cz7RdPpq7fDWRs_KoDGZ4CHDEC5bRMuhZFaxVL7s-mDJnFZ0skmieXbfjuzQNfEIDQIEesWviH2VUjBVpraNu_f3KeeTZnhXClu-_UjP--wc3UPM7YA_ffpmiTbSk8y200jZVe-fb6CPGsJjh-DJJrHMwWwp3AH5WUZZTPsK9fDx8A0Icjx4n02HxNMa12KBveVSLOQbUCrMCJ1XPsobaCMdKGT9aaEjrlz0A-q6Sf89r0qTyWjTHg68apyZn7Wyqm6jXurq_6FiLigzW0KVhYTEGEuWSZYrArtwTLMwkE8RVjmRMM8-VjAPc5lHEiadEphh3hZP5RIbAGADDO6iRT3K9i7CrKZNRllEBOiEjR4RSikBJX5ehrjzYQ82Sv4OXKunGoGbt_h_tB2itFLPxpKWHqAEj0UewXyjEsdGTT0H4wZs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1XT8MwELagiPHEKmJjJF5TMuwkfgyjA5oK0Rb1rfIKVHSgqkWUP8Lf5eI0IJCQeIssn-XcnX3-7BsInQG24dTWgRUkoMHEl47FwSxZRGnuEBrYoXk9jxt-tU1uOrQzD1Y3sTBaa-N8pkvpp3nLVyM5Ta_KYIX7AEdcuoiWwPATmoVr5RuvB8bMXkGn8zSa57VKdN9sUo8EFHCgS0o5-Y9CKsaOlNdRI59B5j7yXJpOREm-_0rO-O8pbqDid8gevvsyRptoQQ-30HLF1O2dbaOPCMN2hqOrOLYuwHApXAUAmsVZjnkft4eD3hsQ4qj_OBr3Jk8DnAsO-qaXtZhjwK2wLnCc9UyrqPVxpJTxpIWGZj7YA-DvLP33LCeNM79Fc0H4qnHTZK2djnURtcvXrcuqNa_JYPWcwJ9YjIFMuWSJInAudwXzE8kEcZQtGdPMdSTjALh5GHLiKpEoxh1hJx6RPjAG4PAOKgxHQ72LsKMDJsMkCQRohQxt4UspqJKeToNdOd1DxZS_3Zcs7UY3Z-3-H-0naLXaiuvdeq1xe4DWUpEbv9rgEBXgr_QRnB4m4tjozCeLd8To
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=A+New+ADMM-Based+Hyperspectral+Unmixing+Algorithm+Associated+with+a+Linear+Mixing+Model+Addressing+Spectral+Variability+with+a+Multiplicative+Structure&rft.au=Benhalouche%2C+Fatima+Zohra&rft.au=Karoui%2C+Moussa+Sofiane&rft.au=Deville%2C+Yannick&rft.date=2024-07-07&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=7710&rft.epage=7713&rft_id=info:doi/10.1109%2FIGARSS53475.2024.10640925&rft.externalDocID=10640925