A New ADMM-Based Hyperspectral Unmixing Algorithm Associated with a Linear Mixing Model Addressing Spectral Variability with a Multiplicative Structure
In this paper, we propose an approach based on an Alternating Direction Method of Multipliers (ADMM) to unmix hyperspectral data using a recently proposed linear mixing model in which the spectral variability phenomenon is spectrally modeled in a multiplicative manner. This model allows for pixel-wi...
Saved in:
Published in | IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 7710 - 7713 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
07.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2153-7003 |
DOI | 10.1109/IGARSS53475.2024.10640925 |
Cover
Abstract | In this paper, we propose an approach based on an Alternating Direction Method of Multipliers (ADMM) to unmix hyperspectral data using a recently proposed linear mixing model in which the spectral variability phenomenon is spectrally modeled in a multiplicative manner. This model allows for pixel-wise variation of the endmembers, resulting in different versions of the reference component spectra being considered in each pixel of the image. The proposed ADMM-based unmixing algorithm involves new iterative update rules. The investigation also evaluates the performance of the designed algorithm against some literature ones previously proposed. To this end, experiments using synthetic hyperspectral data are carried out. Overall, the obtained results prove that the proposed algorithm is very attractive for hyperspectral unmixing taking the spectral variability phenomenon into account. |
---|---|
AbstractList | In this paper, we propose an approach based on an Alternating Direction Method of Multipliers (ADMM) to unmix hyperspectral data using a recently proposed linear mixing model in which the spectral variability phenomenon is spectrally modeled in a multiplicative manner. This model allows for pixel-wise variation of the endmembers, resulting in different versions of the reference component spectra being considered in each pixel of the image. The proposed ADMM-based unmixing algorithm involves new iterative update rules. The investigation also evaluates the performance of the designed algorithm against some literature ones previously proposed. To this end, experiments using synthetic hyperspectral data are carried out. Overall, the obtained results prove that the proposed algorithm is very attractive for hyperspectral unmixing taking the spectral variability phenomenon into account. |
Author | Benhalouche, Fatima Zohra Deville, Yannick Karoui, Moussa Sofiane |
Author_xml | – sequence: 1 givenname: Fatima Zohra surname: Benhalouche fullname: Benhalouche, Fatima Zohra organization: Agence Spatiale Algérienne,Centre des Techniques Spatiales,Arzew,Algeria – sequence: 2 givenname: Moussa Sofiane surname: Karoui fullname: Karoui, Moussa Sofiane organization: Agence Spatiale Algérienne,Centre des Techniques Spatiales,Arzew,Algeria – sequence: 3 givenname: Yannick surname: Deville fullname: Deville, Yannick organization: Université de Toulouse, UPS, CNRS, OMP, CNES,IRAP,Toulouse,France |
BookMark | eNo1kEtOwzAYhA0Cibb0BizMAVL8yMvLUKCt1IBEKNvKsf8UozSJbJfSk3BdgkpXMxp9M4sZooumbQChW0omlBJxt5hlr0UR8TCJJoywcEJJHBLBojM0FolIeUR4TDiLztGA0YgHCSH8Cg2d--xNyggZoJ8MP8MeZw95HtxLBxrPDx1Y14HyVtZ41WzNt2k2OKs3rTX-Y4sz51plpO_ZfR9giZemAWlxfiTzVkONM60tOPcXFKexd2mNLE1t_OFUzXe1N11tlPTmC3Dh7U75nYVrdFnJ2sH4X0do9fT4Np0Hy5fZYpotA0OT2AdCVGkilah0mCSMlSKulChDqokSAgSjSshYEJmmMmS6rLSQtCQVD1XcX8VTPkI3x10DAOvOmq20h_XpSP4Lq5xtHw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS53475.2024.10640925 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 9798350360325 |
EISSN | 2153-7003 |
EndPage | 7713 |
ExternalDocumentID | 10640925 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i176t-99f87ac9fd47722b96fc9b41d0c99e921c9a690a88a42dbfd9a1b0f34c6640383 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:03:09 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-99f87ac9fd47722b96fc9b41d0c99e921c9a690a88a42dbfd9a1b0f34c6640383 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10640925 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-7 |
PublicationDateYYYYMMDD | 2024-07-07 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-7 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Geoscience and Remote Sensing Symposium proceedings |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 1.8860419 |
Snippet | In this paper, we propose an approach based on an Alternating Direction Method of Multipliers (ADMM) to unmix hyperspectral data using a recently proposed... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7710 |
SubjectTerms | Adaptation models alternating direction method of multipliers Convex functions Data models Geoscience and remote sensing Hyperspectral data Hyperspectral imaging Iterative algorithms linear mixing model linear spectral unmixing Optimization spectral variability |
Title | A New ADMM-Based Hyperspectral Unmixing Algorithm Associated with a Linear Mixing Model Addressing Spectral Variability with a Multiplicative Structure |
URI | https://ieeexplore.ieee.org/document/10640925 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46UHzyNvFOBF9be0mb5rFetil0iHWyt5Fbdbh1Mjpx_hH_rqfpqigIvpWQ0zbnnOTkS84FoVPANjxwNLVoBhpMQulaHMySRZTmLgmoE5nb86Qbdnrkph_0F8HqJhZGa22cz7RdPpq7fDWRs_KoDGZ4CHDEC5bRMuhZFaxVL7s-mDJnFZ0skmieXbfjuzQNfEIDQIEesWviH2VUjBVpraNu_f3KeeTZnhXClu-_UjP--wc3UPM7YA_ffpmiTbSk8y200jZVe-fb6CPGsJjh-DJJrHMwWwp3AH5WUZZTPsK9fDx8A0Icjx4n02HxNMa12KBveVSLOQbUCrMCJ1XPsobaCMdKGT9aaEjrlz0A-q6Sf89r0qTyWjTHg68apyZn7Wyqm6jXurq_6FiLigzW0KVhYTEGEuWSZYrArtwTLMwkE8RVjmRMM8-VjAPc5lHEiadEphh3hZP5RIbAGADDO6iRT3K9i7CrKZNRllEBOiEjR4RSikBJX5ehrjzYQ82Sv4OXKunGoGbt_h_tB2itFLPxpKWHqAEj0UewXyjEsdGTT0H4wZs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1XT8MwELagiPHEKmJjJF5TMuwkfgyjA5oK0Rb1rfIKVHSgqkWUP8Lf5eI0IJCQeIssn-XcnX3-7BsInQG24dTWgRUkoMHEl47FwSxZRGnuEBrYoXk9jxt-tU1uOrQzD1Y3sTBaa-N8pkvpp3nLVyM5Ta_KYIX7AEdcuoiWwPATmoVr5RuvB8bMXkGn8zSa57VKdN9sUo8EFHCgS0o5-Y9CKsaOlNdRI59B5j7yXJpOREm-_0rO-O8pbqDid8gevvsyRptoQQ-30HLF1O2dbaOPCMN2hqOrOLYuwHApXAUAmsVZjnkft4eD3hsQ4qj_OBr3Jk8DnAsO-qaXtZhjwK2wLnCc9UyrqPVxpJTxpIWGZj7YA-DvLP33LCeNM79Fc0H4qnHTZK2djnURtcvXrcuqNa_JYPWcwJ9YjIFMuWSJInAudwXzE8kEcZQtGdPMdSTjALh5GHLiKpEoxh1hJx6RPjAG4PAOKgxHQ72LsKMDJsMkCQRohQxt4UspqJKeToNdOd1DxZS_3Zcs7UY3Z-3-H-0naLXaiuvdeq1xe4DWUpEbv9rgEBXgr_QRnB4m4tjozCeLd8To |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=A+New+ADMM-Based+Hyperspectral+Unmixing+Algorithm+Associated+with+a+Linear+Mixing+Model+Addressing+Spectral+Variability+with+a+Multiplicative+Structure&rft.au=Benhalouche%2C+Fatima+Zohra&rft.au=Karoui%2C+Moussa+Sofiane&rft.au=Deville%2C+Yannick&rft.date=2024-07-07&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=7710&rft.epage=7713&rft_id=info:doi/10.1109%2FIGARSS53475.2024.10640925&rft.externalDocID=10640925 |