Hierarchical Classification of Grid Event Signatures Using a Public Data Repository
This paper provides an overview of the development of the Signature Matching Tool (SMT) for the Grid Event Signature Library (GESL), a publicly available repository of disturbance event signatures observed in electric power systems. The GESL contains signatures that contain multiple labels, e.g., ph...
Saved in:
Published in | IEEE Power & Energy Society General Meeting pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
21.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-9933 |
DOI | 10.1109/PESGM51994.2024.10689036 |
Cover
Abstract | This paper provides an overview of the development of the Signature Matching Tool (SMT) for the Grid Event Signature Library (GESL), a publicly available repository of disturbance event signatures observed in electric power systems. The GESL contains signatures that contain multiple labels, e.g., phase, status, equipment, in nature, where the labels of each signature are assigned and arranged in a hierarchical, tree-like structure by subject matter experts (SMEs). The SMT thus adopts a local classifier per node (LCN) approach, which is a type of hierarchical classification method, in order to help GESL users identify the natures of unlabeled signatures. The SMT achieved an average accuracy of 83%, with up to 100% accuracy for certain labels, across five root (Primary) labels using a Random Forest binary classifier as the local node classifier. Hierarchical validation metrics, such as precision, recall, and F-1 score, are also calculated to validate the performance of the SMT. |
---|---|
AbstractList | This paper provides an overview of the development of the Signature Matching Tool (SMT) for the Grid Event Signature Library (GESL), a publicly available repository of disturbance event signatures observed in electric power systems. The GESL contains signatures that contain multiple labels, e.g., phase, status, equipment, in nature, where the labels of each signature are assigned and arranged in a hierarchical, tree-like structure by subject matter experts (SMEs). The SMT thus adopts a local classifier per node (LCN) approach, which is a type of hierarchical classification method, in order to help GESL users identify the natures of unlabeled signatures. The SMT achieved an average accuracy of 83%, with up to 100% accuracy for certain labels, across five root (Primary) labels using a Random Forest binary classifier as the local node classifier. Hierarchical validation metrics, such as precision, recall, and F-1 score, are also calculated to validate the performance of the SMT. |
Author | Joo, Jhi-Young Annalicia, Christabella |
Author_xml | – sequence: 1 givenname: Christabella surname: Annalicia fullname: Annalicia, Christabella email: annalicia1@llnl.gov organization: Lawrence Livermore National Laboratory,Computational Engineering Division,Livermore,CA,USA,94550 – sequence: 2 givenname: Jhi-Young surname: Joo fullname: Joo, Jhi-Young email: joo3@llnl.gov organization: Lawrence Livermore National Laboratory,Computational Engineering Division,Livermore,CA,USA,94550 |
BookMark | eNo1kM1OwkAUhUejiYi8gYt5geKd3vldGkQwwUhE1uS2neKY2pKZYsLb00Q9m3NWX76cW3bVdq1njAuYCgHuYT3fLF6VcE5Oc8jlVIC2DlBfsIkzzqICtMJifslGwkmZOYd4wyYpfcEQJY3W-YhtlsFHiuVnKKnhs4ZSCvWw-9C1vKv5IoaKz3982_NN2LfUH6NPfJtCu-fE18eiCSV_op74uz90KfRdPN2x65qa5Cd_PWbb5_nHbJmt3hYvs8dVFoTRfeZQIclycJTkC6eLalBGY1DVBFaBqCsANFRUGlTl0ShTgBTWSJJQgcUxu__lBu_97hDDN8XT7v8HPAMT2VNh |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/PESGM51994.2024.10689036 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350381832 |
EISSN | 1944-9933 |
EndPage | 5 |
ExternalDocumentID | 10689036 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. Department of Energy funderid: 10.13039/100000015 |
GroupedDBID | 29O 6IE 6IF 6IH 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i176t-9353a4c1834aeb96bd50337735fa08501fd0037abd605de3757b041874a40d083 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:20:04 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-9353a4c1834aeb96bd50337735fa08501fd0037abd605de3757b041874a40d083 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10689036 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-21 |
PublicationDateYYYYMMDD | 2024-07-21 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | IEEE Power & Energy Society General Meeting |
PublicationTitleAbbrev | PESGM |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000547662 |
Score | 2.2621233 |
Snippet | This paper provides an overview of the development of the Signature Matching Tool (SMT) for the Grid Event Signature Library (GESL), a publicly available... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy data repository Discrete wavelet transforms disturbance signatures event classification hierarchical classification Kernel Libraries machine learning Measurement Power systems Random forests Subject matter experts Support vector machines Transforms |
Title | Hierarchical Classification of Grid Event Signatures Using a Public Data Repository |
URI | https://ieeexplore.ieee.org/document/10689036 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVNTu2lW0p3dOhVrmNrsc9tFgoJgTSQW5AsqZiWpCTOpV_fGTlJFyj0ZgwGofHozYxm3iPkzha5Adz0jPu4YJynngHOZExmibFaeYBgrHcMhrI_4U9TMd0Mq4dZGOdcaD5zET6Gu3y7KNZYKgMPl1kOR26DNOA_q4e1dgUViD2UlLtunTi_H3XGvYFA8lvIAxMebT__IaQScKR7SIbbFdTtI6_RujJR8fGLnPHfSzwira-RPTragdEx2XPzE3LwjW3wlIz7JU4bB_GTNxrUMLFPKJiGLjztLUtLO9j_SMflS834uaKhp4BqWtf36KOuNMWofVXi9XyLTLqd54c-22gqsLKtZMXyVKSaF-DIXDuTS2PxHlOpVHiN7HVtb5GSRhsLeY51qRLKxByF-zSPLcRrZ6Q5X8zdOaHWZALyrUSYxKFQuU7Bl4VwWpoE4hpxQVq4P7P3mjZjtt2ayz_eX5F9NBMWTpP2NWlWy7W7AcSvzG2w9CfvUqi4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCFVxFvPLAmpIntJDO0BGirSm2lbpUd2ygCtahNF349PqctDwmJLcoQWT5dvnt-H8CNylNpcdN41AS5R2lkPIsziceTUCoRGwvBWO_odHk2pE8jNlouq7tdGK21Gz7TPj66Xr6a5gsslVkP50lqf7mbsGWBn7JqXWtdUrHRR8z5el4nSG97zf5DhyH9rc0EQ-qvPvBDSsUhSWsPuqszVAMkr_6ilH7-8Yue8d-H3If619Ie6a3h6AA29OQQdr_xDR5BPytw39jJn7wRp4eJk0LOOGRqyMOsUKSJE5CkX7xUnJ9z4qYKiCBVhY_ci1IQjNvnBTbo6zBsNQd3mbdUVfCKRsxLL41YJGhuXZkKLVMuFXYy4zhiRiB_XcMoJKURUtlMR-koZrEMKEr3CRooG7EdQ20ynegTIEomzGZcIZOhRqlyEVlvZkwLLkMb2bBTqOP9jN8r4ozx6mrO_nh_DdvZoNMetx-7z-ewgybDMmrYuIBaOVvoS4v_pbxyVv8E94CsBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Power+%26+Energy+Society+General+Meeting&rft.atitle=Hierarchical+Classification+of+Grid+Event+Signatures+Using+a+Public+Data+Repository&rft.au=Annalicia%2C+Christabella&rft.au=Joo%2C+Jhi-Young&rft.date=2024-07-21&rft.pub=IEEE&rft.eissn=1944-9933&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPESGM51994.2024.10689036&rft.externalDocID=10689036 |