Hierarchical Classification of Grid Event Signatures Using a Public Data Repository

This paper provides an overview of the development of the Signature Matching Tool (SMT) for the Grid Event Signature Library (GESL), a publicly available repository of disturbance event signatures observed in electric power systems. The GESL contains signatures that contain multiple labels, e.g., ph...

Full description

Saved in:
Bibliographic Details
Published inIEEE Power & Energy Society General Meeting pp. 1 - 5
Main Authors Annalicia, Christabella, Joo, Jhi-Young
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.07.2024
Subjects
Online AccessGet full text
ISSN1944-9933
DOI10.1109/PESGM51994.2024.10689036

Cover

Abstract This paper provides an overview of the development of the Signature Matching Tool (SMT) for the Grid Event Signature Library (GESL), a publicly available repository of disturbance event signatures observed in electric power systems. The GESL contains signatures that contain multiple labels, e.g., phase, status, equipment, in nature, where the labels of each signature are assigned and arranged in a hierarchical, tree-like structure by subject matter experts (SMEs). The SMT thus adopts a local classifier per node (LCN) approach, which is a type of hierarchical classification method, in order to help GESL users identify the natures of unlabeled signatures. The SMT achieved an average accuracy of 83%, with up to 100% accuracy for certain labels, across five root (Primary) labels using a Random Forest binary classifier as the local node classifier. Hierarchical validation metrics, such as precision, recall, and F-1 score, are also calculated to validate the performance of the SMT.
AbstractList This paper provides an overview of the development of the Signature Matching Tool (SMT) for the Grid Event Signature Library (GESL), a publicly available repository of disturbance event signatures observed in electric power systems. The GESL contains signatures that contain multiple labels, e.g., phase, status, equipment, in nature, where the labels of each signature are assigned and arranged in a hierarchical, tree-like structure by subject matter experts (SMEs). The SMT thus adopts a local classifier per node (LCN) approach, which is a type of hierarchical classification method, in order to help GESL users identify the natures of unlabeled signatures. The SMT achieved an average accuracy of 83%, with up to 100% accuracy for certain labels, across five root (Primary) labels using a Random Forest binary classifier as the local node classifier. Hierarchical validation metrics, such as precision, recall, and F-1 score, are also calculated to validate the performance of the SMT.
Author Joo, Jhi-Young
Annalicia, Christabella
Author_xml – sequence: 1
  givenname: Christabella
  surname: Annalicia
  fullname: Annalicia, Christabella
  email: annalicia1@llnl.gov
  organization: Lawrence Livermore National Laboratory,Computational Engineering Division,Livermore,CA,USA,94550
– sequence: 2
  givenname: Jhi-Young
  surname: Joo
  fullname: Joo, Jhi-Young
  email: joo3@llnl.gov
  organization: Lawrence Livermore National Laboratory,Computational Engineering Division,Livermore,CA,USA,94550
BookMark eNo1kM1OwkAUhUejiYi8gYt5geKd3vldGkQwwUhE1uS2neKY2pKZYsLb00Q9m3NWX76cW3bVdq1njAuYCgHuYT3fLF6VcE5Oc8jlVIC2DlBfsIkzzqICtMJifslGwkmZOYd4wyYpfcEQJY3W-YhtlsFHiuVnKKnhs4ZSCvWw-9C1vKv5IoaKz3982_NN2LfUH6NPfJtCu-fE18eiCSV_op74uz90KfRdPN2x65qa5Cd_PWbb5_nHbJmt3hYvs8dVFoTRfeZQIclycJTkC6eLalBGY1DVBFaBqCsANFRUGlTl0ShTgBTWSJJQgcUxu__lBu_97hDDN8XT7v8HPAMT2VNh
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/PESGM51994.2024.10689036
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350381832
EISSN 1944-9933
EndPage 5
ExternalDocumentID 10689036
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Energy
  funderid: 10.13039/100000015
GroupedDBID 29O
6IE
6IF
6IH
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i176t-9353a4c1834aeb96bd50337735fa08501fd0037abd605de3757b041874a40d083
IEDL.DBID RIE
IngestDate Wed Aug 27 02:20:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-9353a4c1834aeb96bd50337735fa08501fd0037abd605de3757b041874a40d083
PageCount 5
ParticipantIDs ieee_primary_10689036
PublicationCentury 2000
PublicationDate 2024-July-21
PublicationDateYYYYMMDD 2024-07-21
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-21
  day: 21
PublicationDecade 2020
PublicationTitle IEEE Power & Energy Society General Meeting
PublicationTitleAbbrev PESGM
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000547662
Score 2.2621233
Snippet This paper provides an overview of the development of the Signature Matching Tool (SMT) for the Grid Event Signature Library (GESL), a publicly available...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
data repository
Discrete wavelet transforms
disturbance signatures
event classification
hierarchical classification
Kernel
Libraries
machine learning
Measurement
Power systems
Random forests
Subject matter experts
Support vector machines
Transforms
Title Hierarchical Classification of Grid Event Signatures Using a Public Data Repository
URI https://ieeexplore.ieee.org/document/10689036
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVNTu2lW0p3dOhVrmNrsc9tFgoJgTSQW5AsqZiWpCTOpV_fGTlJFyj0ZgwGofHozYxm3iPkzha5Adz0jPu4YJynngHOZExmibFaeYBgrHcMhrI_4U9TMd0Mq4dZGOdcaD5zET6Gu3y7KNZYKgMPl1kOR26DNOA_q4e1dgUViD2UlLtunTi_H3XGvYFA8lvIAxMebT__IaQScKR7SIbbFdTtI6_RujJR8fGLnPHfSzwira-RPTragdEx2XPzE3LwjW3wlIz7JU4bB_GTNxrUMLFPKJiGLjztLUtLO9j_SMflS834uaKhp4BqWtf36KOuNMWofVXi9XyLTLqd54c-22gqsLKtZMXyVKSaF-DIXDuTS2PxHlOpVHiN7HVtb5GSRhsLeY51qRLKxByF-zSPLcRrZ6Q5X8zdOaHWZALyrUSYxKFQuU7Bl4VwWpoE4hpxQVq4P7P3mjZjtt2ayz_eX5F9NBMWTpP2NWlWy7W7AcSvzG2w9CfvUqi4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCFVxFvPLAmpIntJDO0BGirSm2lbpUd2ygCtahNF349PqctDwmJLcoQWT5dvnt-H8CNylNpcdN41AS5R2lkPIsziceTUCoRGwvBWO_odHk2pE8jNlouq7tdGK21Gz7TPj66Xr6a5gsslVkP50lqf7mbsGWBn7JqXWtdUrHRR8z5el4nSG97zf5DhyH9rc0EQ-qvPvBDSsUhSWsPuqszVAMkr_6ilH7-8Yue8d-H3If619Ie6a3h6AA29OQQdr_xDR5BPytw39jJn7wRp4eJk0LOOGRqyMOsUKSJE5CkX7xUnJ9z4qYKiCBVhY_ci1IQjNvnBTbo6zBsNQd3mbdUVfCKRsxLL41YJGhuXZkKLVMuFXYy4zhiRiB_XcMoJKURUtlMR-koZrEMKEr3CRooG7EdQ20ynegTIEomzGZcIZOhRqlyEVlvZkwLLkMb2bBTqOP9jN8r4ozx6mrO_nh_DdvZoNMetx-7z-ewgybDMmrYuIBaOVvoS4v_pbxyVv8E94CsBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Power+%26+Energy+Society+General+Meeting&rft.atitle=Hierarchical+Classification+of+Grid+Event+Signatures+Using+a+Public+Data+Repository&rft.au=Annalicia%2C+Christabella&rft.au=Joo%2C+Jhi-Young&rft.date=2024-07-21&rft.pub=IEEE&rft.eissn=1944-9933&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPESGM51994.2024.10689036&rft.externalDocID=10689036