Benchmarking Classical and Quantum Optimizers for Quantum Simulator

Quantum machine learning is emerging as a new approach in the machine learning field that uses quantum properties, including superposition and entanglement. While the superposition offers low complexity when dealing with high-dimensional data, the entanglement has the potential to help us extract fe...

Full description

Saved in:
Bibliographic Details
Published inInternational Symposium on Computing and Networking (Online) pp. 238 - 244
Main Authors Hai, Vu Tuan, Duong, Le Vu Trung, Luan, Pham Hoai, Nakashima, Yasuhiko
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.11.2024
Subjects
Online AccessGet full text
ISSN2379-1896
DOI10.1109/CANDAR64496.2024.00038

Cover

Loading…
Abstract Quantum machine learning is emerging as a new approach in the machine learning field that uses quantum properties, including superposition and entanglement. While the superposition offers low complexity when dealing with high-dimensional data, the entanglement has the potential to help us extract features better. Many classical and quantum optimizers have been proposed to train quantum machine learning models in the simulation environment. However, to the best of our knowledge, there is still no research investigating the best optimizer, which has the lowest resources and the minimal number of optimization steps, to achieve ideal performance. In this paper, we survey the most popular optimizers, such as Gradient Descent (GD), Adaptive Moment Estimation (Adam), and Quantum Natural Gradient Descent (QNG), through quantum compilation problems. We measure metrics that include the lowest cost value bound and wall time. We come to the conclusion that Adam is the most effective optimizer when achieving 1.94 times better in cost value and 1.10 times better in wall time at 9 qubits.
AbstractList Quantum machine learning is emerging as a new approach in the machine learning field that uses quantum properties, including superposition and entanglement. While the superposition offers low complexity when dealing with high-dimensional data, the entanglement has the potential to help us extract features better. Many classical and quantum optimizers have been proposed to train quantum machine learning models in the simulation environment. However, to the best of our knowledge, there is still no research investigating the best optimizer, which has the lowest resources and the minimal number of optimization steps, to achieve ideal performance. In this paper, we survey the most popular optimizers, such as Gradient Descent (GD), Adaptive Moment Estimation (Adam), and Quantum Natural Gradient Descent (QNG), through quantum compilation problems. We measure metrics that include the lowest cost value bound and wall time. We come to the conclusion that Adam is the most effective optimizer when achieving 1.94 times better in cost value and 1.10 times better in wall time at 9 qubits.
Author Nakashima, Yasuhiko
Duong, Le Vu Trung
Hai, Vu Tuan
Luan, Pham Hoai
Author_xml – sequence: 1
  givenname: Vu Tuan
  surname: Hai
  fullname: Hai, Vu Tuan
  email: vu.tuan_hai.vr7@naist.ac.jp
  organization: Nara Institute of Science and Technology,Ikoma, Nara,Japan,630-0192
– sequence: 2
  givenname: Le Vu Trung
  surname: Duong
  fullname: Duong, Le Vu Trung
  organization: Nara Institute of Science and Technology,Ikoma, Nara,Japan,630-0192
– sequence: 3
  givenname: Pham Hoai
  surname: Luan
  fullname: Luan, Pham Hoai
  organization: Nara Institute of Science and Technology,Ikoma, Nara,Japan,630-0192
– sequence: 4
  givenname: Yasuhiko
  surname: Nakashima
  fullname: Nakashima, Yasuhiko
  organization: Nara Institute of Science and Technology,Ikoma, Nara,Japan,630-0192
BookMark eNo9jttKxDAURaMoOI79A5H-QOs5SZrLY61XGBy8PQ9pmmq0TYemfdCvd0TxacFmsVnH5CAMwRFyhpAjgj6vyvvL8lFwrkVOgfIcAJjaI4mWWjGGBVVM0H2yoEzqDJUWRySJ8f1Ho8BBsAWpLlywb70ZP3x4TavOxOit6VITmvRhNmGa-3S9nXzvv9wY03YY_-cn38-dmYbxhBy2posu-eOSvFxfPVe32Wp9c1eVq8yjFFMmG5QosEDLGjS11SCKotFc1lg3FMFSkFKbVtYgtGoNU-AM1zVvKbe7eLYkp7-_3jm32Y5-l_25QVCoGOXsGwtATg0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CANDAR64496.2024.00038
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331528362
EISSN 2379-1896
EndPage 244
ExternalDocumentID 10818324
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-7d1716151c3d1abc90655d947b1bd210c20779af7b0698fa380ea49b4f24c8963
IEDL.DBID RIE
IngestDate Wed Jan 08 06:10:43 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-7d1716151c3d1abc90655d947b1bd210c20779af7b0698fa380ea49b4f24c8963
PageCount 7
ParticipantIDs ieee_primary_10818324
PublicationCentury 2000
PublicationDate 2024-Nov.-26
PublicationDateYYYYMMDD 2024-11-26
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-26
  day: 26
PublicationDecade 2020
PublicationTitle International Symposium on Computing and Networking (Online)
PublicationTitleAbbrev CANDAR
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204063
Score 1.9011298
Snippet Quantum machine learning is emerging as a new approach in the machine learning field that uses quantum properties, including superposition and entanglement....
SourceID ieee
SourceType Publisher
StartPage 238
SubjectTerms Benchmark testing
benchmarking
Costs
Feature extraction
Optimization
Quantum circuit
quantum compilation
Quantum entanglement
quantum optimizer
quantum simulator
Qubit
Surveys
Tensors
Time measurement
Title Benchmarking Classical and Quantum Optimizers for Quantum Simulator
URI https://ieeexplore.ieee.org/document/10818324
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZoJ6ZyFHHLA2tKYjtxPJZCVSFRzkrdKp-iQklRlSz99Ty7aUFISEyJvDh69jvzvvchdEUVZSJhBqxfGKptWCRjlUUqJWCRiWZ5IIN5GGejCbufptMGrB6wMNba0Hxme_41_Ms3C137UhloeO5vIGuhFmRua7DWtqBCCdzHjDYo4CQW14P--Lb_Ag5f-F4E4sdkxx6H8oNGJXiRYQeNN_uvm0c-enWlenr1azTjvz9wD3W_AXv4aeuK9tGOLQ9QZ8PYgBsFPkSDG3i-FzIUyHEgxPSHhGVp8HMNQq4L_AhGpJivICzEENBul1_nhWf6Wiy7aDK8exuMooZGIZonPKsibvxIHPDsmppEKi0g6kiNYFwlykDGp0nMuZCOqzgTuZM0j61kQjFHmM5BQY9Qu1yU9hhhK_z0fap0yglz3OUytZCROeo8kRVxJ6jrhTL7XE_KmG3kcfrH-hna9QfjsX0kO0ftalnbC3DylboMh_sFuUylOQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDCVRxFvPLCmJI4Tx2MpVAXa8GqlbpXt2KJCSVGVLP31nN0HCAmJKZYn68738OW--xC6CmVIeUAz8H5uqHZGPeHL2JMRAY9MFE0cGUw_jbtD-jCKRkuwusPCaK1d85lu2qX7l59NVWVLZWDhib2BdBNtQeCPggVca11SCQncyDhc4oADn1-3W-lt6xVCPrfdCMQOyvYtEuUHkYqLI506SlcnWLSPfDSrUjbV_Ndwxn8fcRc1viF7-HkdjPbQhi72UX3F2YCXJnyA2jfwfc-FK5FjR4lp1YRFkeGXCsRc5fgJ3Eg-mUNiiCGlXW-_TXLL9TWdNdCwczdod70lkYI3CVhceiyzQ3EgtqswC4RUHPKOKOOUyUBm8OZTxGeMC8OkH_PEiDDxtaBcUkOoSsBED1GtmBb6CGHN7fz9UKqIEWqYSUSk4U1mQmOprIg5Rg0rlPHnYlbGeCWPkz_2L9F2d9DvjXv36eMp2rFKskg_Ep-hWjmr9DmE_FJeOEV_AYo0qII
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Computing+and+Networking+%28Online%29&rft.atitle=Benchmarking+Classical+and+Quantum+Optimizers+for+Quantum+Simulator&rft.au=Hai%2C+Vu+Tuan&rft.au=Duong%2C+Le+Vu+Trung&rft.au=Luan%2C+Pham+Hoai&rft.au=Nakashima%2C+Yasuhiko&rft.date=2024-11-26&rft.pub=IEEE&rft.eissn=2379-1896&rft.spage=238&rft.epage=244&rft_id=info:doi/10.1109%2FCANDAR64496.2024.00038&rft.externalDocID=10818324