Benchmarking Classical and Quantum Optimizers for Quantum Simulator
Quantum machine learning is emerging as a new approach in the machine learning field that uses quantum properties, including superposition and entanglement. While the superposition offers low complexity when dealing with high-dimensional data, the entanglement has the potential to help us extract fe...
Saved in:
Published in | International Symposium on Computing and Networking (Online) pp. 238 - 244 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
26.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-1896 |
DOI | 10.1109/CANDAR64496.2024.00038 |
Cover
Loading…
Abstract | Quantum machine learning is emerging as a new approach in the machine learning field that uses quantum properties, including superposition and entanglement. While the superposition offers low complexity when dealing with high-dimensional data, the entanglement has the potential to help us extract features better. Many classical and quantum optimizers have been proposed to train quantum machine learning models in the simulation environment. However, to the best of our knowledge, there is still no research investigating the best optimizer, which has the lowest resources and the minimal number of optimization steps, to achieve ideal performance. In this paper, we survey the most popular optimizers, such as Gradient Descent (GD), Adaptive Moment Estimation (Adam), and Quantum Natural Gradient Descent (QNG), through quantum compilation problems. We measure metrics that include the lowest cost value bound and wall time. We come to the conclusion that Adam is the most effective optimizer when achieving 1.94 times better in cost value and 1.10 times better in wall time at 9 qubits. |
---|---|
AbstractList | Quantum machine learning is emerging as a new approach in the machine learning field that uses quantum properties, including superposition and entanglement. While the superposition offers low complexity when dealing with high-dimensional data, the entanglement has the potential to help us extract features better. Many classical and quantum optimizers have been proposed to train quantum machine learning models in the simulation environment. However, to the best of our knowledge, there is still no research investigating the best optimizer, which has the lowest resources and the minimal number of optimization steps, to achieve ideal performance. In this paper, we survey the most popular optimizers, such as Gradient Descent (GD), Adaptive Moment Estimation (Adam), and Quantum Natural Gradient Descent (QNG), through quantum compilation problems. We measure metrics that include the lowest cost value bound and wall time. We come to the conclusion that Adam is the most effective optimizer when achieving 1.94 times better in cost value and 1.10 times better in wall time at 9 qubits. |
Author | Nakashima, Yasuhiko Duong, Le Vu Trung Hai, Vu Tuan Luan, Pham Hoai |
Author_xml | – sequence: 1 givenname: Vu Tuan surname: Hai fullname: Hai, Vu Tuan email: vu.tuan_hai.vr7@naist.ac.jp organization: Nara Institute of Science and Technology,Ikoma, Nara,Japan,630-0192 – sequence: 2 givenname: Le Vu Trung surname: Duong fullname: Duong, Le Vu Trung organization: Nara Institute of Science and Technology,Ikoma, Nara,Japan,630-0192 – sequence: 3 givenname: Pham Hoai surname: Luan fullname: Luan, Pham Hoai organization: Nara Institute of Science and Technology,Ikoma, Nara,Japan,630-0192 – sequence: 4 givenname: Yasuhiko surname: Nakashima fullname: Nakashima, Yasuhiko organization: Nara Institute of Science and Technology,Ikoma, Nara,Japan,630-0192 |
BookMark | eNo9jttKxDAURaMoOI79A5H-QOs5SZrLY61XGBy8PQ9pmmq0TYemfdCvd0TxacFmsVnH5CAMwRFyhpAjgj6vyvvL8lFwrkVOgfIcAJjaI4mWWjGGBVVM0H2yoEzqDJUWRySJ8f1Ho8BBsAWpLlywb70ZP3x4TavOxOit6VITmvRhNmGa-3S9nXzvv9wY03YY_-cn38-dmYbxhBy2posu-eOSvFxfPVe32Wp9c1eVq8yjFFMmG5QosEDLGjS11SCKotFc1lg3FMFSkFKbVtYgtGoNU-AM1zVvKbe7eLYkp7-_3jm32Y5-l_25QVCoGOXsGwtATg0 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CANDAR64496.2024.00038 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798331528362 |
EISSN | 2379-1896 |
EndPage | 244 |
ExternalDocumentID | 10818324 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i176t-7d1716151c3d1abc90655d947b1bd210c20779af7b0698fa380ea49b4f24c8963 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 08 06:10:43 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-7d1716151c3d1abc90655d947b1bd210c20779af7b0698fa380ea49b4f24c8963 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10818324 |
PublicationCentury | 2000 |
PublicationDate | 2024-Nov.-26 |
PublicationDateYYYYMMDD | 2024-11-26 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | International Symposium on Computing and Networking (Online) |
PublicationTitleAbbrev | CANDAR |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003204063 |
Score | 1.9011298 |
Snippet | Quantum machine learning is emerging as a new approach in the machine learning field that uses quantum properties, including superposition and entanglement.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 238 |
SubjectTerms | Benchmark testing benchmarking Costs Feature extraction Optimization Quantum circuit quantum compilation Quantum entanglement quantum optimizer quantum simulator Qubit Surveys Tensors Time measurement |
Title | Benchmarking Classical and Quantum Optimizers for Quantum Simulator |
URI | https://ieeexplore.ieee.org/document/10818324 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZoJ6ZyFHHLA2tKYjtxPJZCVSFRzkrdKp-iQklRlSz99Ty7aUFISEyJvDh69jvzvvchdEUVZSJhBqxfGKptWCRjlUUqJWCRiWZ5IIN5GGejCbufptMGrB6wMNba0Hxme_41_Ms3C137UhloeO5vIGuhFmRua7DWtqBCCdzHjDYo4CQW14P--Lb_Ag5f-F4E4sdkxx6H8oNGJXiRYQeNN_uvm0c-enWlenr1azTjvz9wD3W_AXv4aeuK9tGOLQ9QZ8PYgBsFPkSDG3i-FzIUyHEgxPSHhGVp8HMNQq4L_AhGpJivICzEENBul1_nhWf6Wiy7aDK8exuMooZGIZonPKsibvxIHPDsmppEKi0g6kiNYFwlykDGp0nMuZCOqzgTuZM0j61kQjFHmM5BQY9Qu1yU9hhhK_z0fap0yglz3OUytZCROeo8kRVxJ6jrhTL7XE_KmG3kcfrH-hna9QfjsX0kO0ftalnbC3DylboMh_sFuUylOQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDCVRxFvPLCmJI4Tx2MpVAXa8GqlbpXt2KJCSVGVLP31nN0HCAmJKZYn68738OW--xC6CmVIeUAz8H5uqHZGPeHL2JMRAY9MFE0cGUw_jbtD-jCKRkuwusPCaK1d85lu2qX7l59NVWVLZWDhib2BdBNtQeCPggVca11SCQncyDhc4oADn1-3W-lt6xVCPrfdCMQOyvYtEuUHkYqLI506SlcnWLSPfDSrUjbV_Ndwxn8fcRc1viF7-HkdjPbQhi72UX3F2YCXJnyA2jfwfc-FK5FjR4lp1YRFkeGXCsRc5fgJ3Eg-mUNiiCGlXW-_TXLL9TWdNdCwczdod70lkYI3CVhceiyzQ3EgtqswC4RUHPKOKOOUyUBm8OZTxGeMC8OkH_PEiDDxtaBcUkOoSsBED1GtmBb6CGHN7fz9UKqIEWqYSUSk4U1mQmOprIg5Rg0rlPHnYlbGeCWPkz_2L9F2d9DvjXv36eMp2rFKskg_Ep-hWjmr9DmE_FJeOEV_AYo0qII |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Computing+and+Networking+%28Online%29&rft.atitle=Benchmarking+Classical+and+Quantum+Optimizers+for+Quantum+Simulator&rft.au=Hai%2C+Vu+Tuan&rft.au=Duong%2C+Le+Vu+Trung&rft.au=Luan%2C+Pham+Hoai&rft.au=Nakashima%2C+Yasuhiko&rft.date=2024-11-26&rft.pub=IEEE&rft.eissn=2379-1896&rft.spage=238&rft.epage=244&rft_id=info:doi/10.1109%2FCANDAR64496.2024.00038&rft.externalDocID=10818324 |