Motor Imagery EEG Signal Recognition Based on ACVAE and CNN-LSTM
Hybrid neural networks are able to capture the time-dependency of electroencephalography (EEG) signals, and can therefore effectively perform pattern recognition of motor imagery EEG signals. However, a sufficiently large amount of training data is required to achieve optimal results, so it is neces...
Saved in:
Published in | 2024 International Conference on Electronic Engineering and Information Systems (EEISS) pp. 197 - 202 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
13.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid neural networks are able to capture the time-dependency of electroencephalography (EEG) signals, and can therefore effectively perform pattern recognition of motor imagery EEG signals. However, a sufficiently large amount of training data is required to achieve optimal results, so it is necessary to use data augmentation methods to increase the amount of data. Therefore, we propose a data augmentation method based on the Attention Convolutional Variation Autoencoder (ACVAE) and design a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) network for pattern recognition. The BCI Competition IV dataset 2a is used for experimental validation. The results show that the ACVAE method produces higher quality data, with the highest recognition accuracy of 97.16% for a single subject in the four-classification task. Compared to other methods, we proposed method shows excellent performance. |
---|---|
AbstractList | Hybrid neural networks are able to capture the time-dependency of electroencephalography (EEG) signals, and can therefore effectively perform pattern recognition of motor imagery EEG signals. However, a sufficiently large amount of training data is required to achieve optimal results, so it is necessary to use data augmentation methods to increase the amount of data. Therefore, we propose a data augmentation method based on the Attention Convolutional Variation Autoencoder (ACVAE) and design a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) network for pattern recognition. The BCI Competition IV dataset 2a is used for experimental validation. The results show that the ACVAE method produces higher quality data, with the highest recognition accuracy of 97.16% for a single subject in the four-classification task. Compared to other methods, we proposed method shows excellent performance. |
Author | Xie, Nenggang Hu, Cunlin Wang, Hongliang Zhou, Tao Li, Jian Ye, Ye |
Author_xml | – sequence: 1 givenname: Cunlin surname: Hu fullname: Hu, Cunlin email: hz041123@163.com organization: Anhui University of Technology,College of Mechanical Engineering,Maanshan,China – sequence: 2 givenname: Ye surname: Ye fullname: Ye, Ye email: yeyemas@ahut.edu.cn organization: Anhui University of Technology,College of Mechanical Engineering,Maanshan,China – sequence: 3 givenname: Jian surname: Li fullname: Li, Jian email: 13956235558@126.com organization: Maanshan People's Hospital,Maanshan,China – sequence: 4 givenname: Hongliang surname: Wang fullname: Wang, Hongliang email: arronprc@yeah.net organization: Maanshan People's Hospital,Maanshan,China – sequence: 5 givenname: Tao surname: Zhou fullname: Zhou, Tao email: zty7621@163.com organization: Maanshan People's Hospital,Maanshan,China – sequence: 6 givenname: Nenggang surname: Xie fullname: Xie, Nenggang email: xienenggang@aliyun.com organization: Anhui University of Technology,College of Management Science and Engineering,Maanshan,China |
BookMark | eNotzM1Og0AUQOEx0YXWvoEm8wLgnT-G2YlkrCS0JlLdNhe4kEnawVA2fXtNdHW-1blj13GKxNijgFQIcE_eV02TSWNUKkHqFAC0vGJrZ12uDCgjQKlb9rydlmnm1QlHmi_c-w1vwhjxyD-om8YYljBF_oJn6vkvivKr8Bxjz8vdLqmb_fae3Qx4PNP6vyv2-er35VtSv2-qsqiTIGy2JFbnCCR1N6DNnaQeFSChUVKZDlCqdnBuGDSh7VALFBJFLntqW9c5yIVasYe_byCiw_ccTjhfDgIysNpI9QOOi0WK |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/EEISS62553.2024.00042 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) - NZ IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350351033 |
EndPage | 202 |
ExternalDocumentID | 10607452 |
Genre | orig-research |
GrantInformation_xml | – fundername: Health funderid: 10.13039/100018696 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i176t-748a0e24cfa7892eda30aea53235c0a23bf99ff4ea7ca41a12a182debb9c90813 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 07 05:31:02 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-748a0e24cfa7892eda30aea53235c0a23bf99ff4ea7ca41a12a182debb9c90813 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10607452 |
PublicationCentury | 2000 |
PublicationDate | 2024-Jan.-13 |
PublicationDateYYYYMMDD | 2024-01-13 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan.-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | 2024 International Conference on Electronic Engineering and Information Systems (EEISS) |
PublicationTitleAbbrev | EEISS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8672953 |
Snippet | Hybrid neural networks are able to capture the time-dependency of electroencephalography (EEG) signals, and can therefore effectively perform pattern... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 197 |
SubjectTerms | Accuracy Convolutional Neural Network Data augmentation EEG recognition Electroencephalography Long Short-Term Memory Motors Neural networks Pattern recognition Training data Variational Autoencoder |
Title | Motor Imagery EEG Signal Recognition Based on ACVAE and CNN-LSTM |
URI | https://ieeexplore.ieee.org/document/10607452 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCa6kyc1zvg7HLx2llLacnMunZtxjbGb2W2h8DCLWWtMd9C_3ke3aTQx8UbgAIQH33vwvg9CLrmVKorA96TF7RZqEF4CsfW4NmhB6DJbcOTkURYNJuHdVEzXZPWGCwMATfIZdFyxecs3lV66qzLc4REinsATdxsjtxVZa83KYb68StNhnqM_LzjGfUHYCHEGP35NaUCjv0uyTXerXJGXzrIuOvrjlxLjv8ezR9rf_Dz68IU8-2QLygNyPaowfqbDhVOleKdpekvz-TPaCX3cJAlVJb1B1DIUC93eUzelqjS0l2XefT4etcmkn457A2_9P4I3Z3FUOxlQ5UMQaqviRAZgFPcVKMEDLrSvAl5YKa0NQcVahUyxQGE0YaAopJboCvBD0iqrEo4IjW1hmUgU-CYJbWGwEZiwECubOHbtMWm76c9eVxIYs83MT_6oPyU7bgncXQXjZ6RVvy3hHNG7Li6aVfsEECuZsg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCZmHvSkxhl_y8FrZ1tKW27Opbrp2hi7md0WCg-zGFtjuoP-9T66TaOJiTcCByA8-N6D930Qcs6MkGEIriMMbrdAAXdiiIzDlEYLQpfZgCUnp1nYHwe3Ez5ZktUbLgwANMln0LHF5i1fV2pur8pwh4eIeBxP3HUEfu4t6FpLXo7nioskGeQ5evScYeTnB40Up__j35QGNq63SLbqcJEt8tyZ10VHffzSYvz3iLZJ-5uhR--_sGeHrEG5Sy7TCiNoOnixuhTvNEluaD57QkuhD6s0oaqkV4hbmmKh23vsJlSWmvayzBnmo7RNxtfJqNd3lj8kODMvCmsrBCpd8ANlZBQLH7RkrgTJmc-4cqXPCiOEMQHISMnAk54vMZ7QUBRCCXQG2B5plVUJ-4RGpjAejyW4Og5MobERPG4gkia2_NoD0rbTn74uRDCmq5kf_lF_Rjb6o3Q4HQ6yuyOyaZfD3lx47Ji06rc5nCCW18Vps4KfScOc-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Electronic+Engineering+and+Information+Systems+%28EEISS%29&rft.atitle=Motor+Imagery+EEG+Signal+Recognition+Based+on+ACVAE+and+CNN-LSTM&rft.au=Hu%2C+Cunlin&rft.au=Ye%2C+Ye&rft.au=Li%2C+Jian&rft.au=Wang%2C+Hongliang&rft.date=2024-01-13&rft.pub=IEEE&rft.spage=197&rft.epage=202&rft_id=info:doi/10.1109%2FEEISS62553.2024.00042&rft.externalDocID=10607452 |