Motor Imagery EEG Signal Recognition Based on ACVAE and CNN-LSTM

Hybrid neural networks are able to capture the time-dependency of electroencephalography (EEG) signals, and can therefore effectively perform pattern recognition of motor imagery EEG signals. However, a sufficiently large amount of training data is required to achieve optimal results, so it is neces...

Full description

Saved in:
Bibliographic Details
Published in2024 International Conference on Electronic Engineering and Information Systems (EEISS) pp. 197 - 202
Main Authors Hu, Cunlin, Ye, Ye, Li, Jian, Wang, Hongliang, Zhou, Tao, Xie, Nenggang
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid neural networks are able to capture the time-dependency of electroencephalography (EEG) signals, and can therefore effectively perform pattern recognition of motor imagery EEG signals. However, a sufficiently large amount of training data is required to achieve optimal results, so it is necessary to use data augmentation methods to increase the amount of data. Therefore, we propose a data augmentation method based on the Attention Convolutional Variation Autoencoder (ACVAE) and design a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) network for pattern recognition. The BCI Competition IV dataset 2a is used for experimental validation. The results show that the ACVAE method produces higher quality data, with the highest recognition accuracy of 97.16% for a single subject in the four-classification task. Compared to other methods, we proposed method shows excellent performance.
AbstractList Hybrid neural networks are able to capture the time-dependency of electroencephalography (EEG) signals, and can therefore effectively perform pattern recognition of motor imagery EEG signals. However, a sufficiently large amount of training data is required to achieve optimal results, so it is necessary to use data augmentation methods to increase the amount of data. Therefore, we propose a data augmentation method based on the Attention Convolutional Variation Autoencoder (ACVAE) and design a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) network for pattern recognition. The BCI Competition IV dataset 2a is used for experimental validation. The results show that the ACVAE method produces higher quality data, with the highest recognition accuracy of 97.16% for a single subject in the four-classification task. Compared to other methods, we proposed method shows excellent performance.
Author Xie, Nenggang
Hu, Cunlin
Wang, Hongliang
Zhou, Tao
Li, Jian
Ye, Ye
Author_xml – sequence: 1
  givenname: Cunlin
  surname: Hu
  fullname: Hu, Cunlin
  email: hz041123@163.com
  organization: Anhui University of Technology,College of Mechanical Engineering,Maanshan,China
– sequence: 2
  givenname: Ye
  surname: Ye
  fullname: Ye, Ye
  email: yeyemas@ahut.edu.cn
  organization: Anhui University of Technology,College of Mechanical Engineering,Maanshan,China
– sequence: 3
  givenname: Jian
  surname: Li
  fullname: Li, Jian
  email: 13956235558@126.com
  organization: Maanshan People's Hospital,Maanshan,China
– sequence: 4
  givenname: Hongliang
  surname: Wang
  fullname: Wang, Hongliang
  email: arronprc@yeah.net
  organization: Maanshan People's Hospital,Maanshan,China
– sequence: 5
  givenname: Tao
  surname: Zhou
  fullname: Zhou, Tao
  email: zty7621@163.com
  organization: Maanshan People's Hospital,Maanshan,China
– sequence: 6
  givenname: Nenggang
  surname: Xie
  fullname: Xie, Nenggang
  email: xienenggang@aliyun.com
  organization: Anhui University of Technology,College of Management Science and Engineering,Maanshan,China
BookMark eNotzM1Og0AUQOEx0YXWvoEm8wLgnT-G2YlkrCS0JlLdNhe4kEnawVA2fXtNdHW-1blj13GKxNijgFQIcE_eV02TSWNUKkHqFAC0vGJrZ12uDCgjQKlb9rydlmnm1QlHmi_c-w1vwhjxyD-om8YYljBF_oJn6vkvivKr8Bxjz8vdLqmb_fae3Qx4PNP6vyv2-er35VtSv2-qsqiTIGy2JFbnCCR1N6DNnaQeFSChUVKZDlCqdnBuGDSh7VALFBJFLntqW9c5yIVasYe_byCiw_ccTjhfDgIysNpI9QOOi0WK
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EEISS62553.2024.00042
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350351033
EndPage 202
ExternalDocumentID 10607452
Genre orig-research
GrantInformation_xml – fundername: Health
  funderid: 10.13039/100018696
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-748a0e24cfa7892eda30aea53235c0a23bf99ff4ea7ca41a12a182debb9c90813
IEDL.DBID RIE
IngestDate Wed Aug 07 05:31:02 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-748a0e24cfa7892eda30aea53235c0a23bf99ff4ea7ca41a12a182debb9c90813
PageCount 6
ParticipantIDs ieee_primary_10607452
PublicationCentury 2000
PublicationDate 2024-Jan.-13
PublicationDateYYYYMMDD 2024-01-13
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.-13
  day: 13
PublicationDecade 2020
PublicationTitle 2024 International Conference on Electronic Engineering and Information Systems (EEISS)
PublicationTitleAbbrev EEISS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8672953
Snippet Hybrid neural networks are able to capture the time-dependency of electroencephalography (EEG) signals, and can therefore effectively perform pattern...
SourceID ieee
SourceType Publisher
StartPage 197
SubjectTerms Accuracy
Convolutional Neural Network
Data augmentation
EEG recognition
Electroencephalography
Long Short-Term Memory
Motors
Neural networks
Pattern recognition
Training data
Variational Autoencoder
Title Motor Imagery EEG Signal Recognition Based on ACVAE and CNN-LSTM
URI https://ieeexplore.ieee.org/document/10607452
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCa6kyc1zvg7HLx2llLacnMunZtxjbGb2W2h8DCLWWtMd9C_3ke3aTQx8UbgAIQH33vwvg9CLrmVKorA96TF7RZqEF4CsfW4NmhB6DJbcOTkURYNJuHdVEzXZPWGCwMATfIZdFyxecs3lV66qzLc4REinsATdxsjtxVZa83KYb68StNhnqM_LzjGfUHYCHEGP35NaUCjv0uyTXerXJGXzrIuOvrjlxLjv8ezR9rf_Dz68IU8-2QLygNyPaowfqbDhVOleKdpekvz-TPaCX3cJAlVJb1B1DIUC93eUzelqjS0l2XefT4etcmkn457A2_9P4I3Z3FUOxlQ5UMQaqviRAZgFPcVKMEDLrSvAl5YKa0NQcVahUyxQGE0YaAopJboCvBD0iqrEo4IjW1hmUgU-CYJbWGwEZiwECubOHbtMWm76c9eVxIYs83MT_6oPyU7bgncXQXjZ6RVvy3hHNG7Li6aVfsEECuZsg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCZmHvSkxhl_y8FrZ1tKW27Opbrp2hi7md0WCg-zGFtjuoP-9T66TaOJiTcCByA8-N6D930Qcs6MkGEIriMMbrdAAXdiiIzDlEYLQpfZgCUnp1nYHwe3Ez5ZktUbLgwANMln0LHF5i1fV2pur8pwh4eIeBxP3HUEfu4t6FpLXo7nioskGeQ5evScYeTnB40Up__j35QGNq63SLbqcJEt8tyZ10VHffzSYvz3iLZJ-5uhR--_sGeHrEG5Sy7TCiNoOnixuhTvNEluaD57QkuhD6s0oaqkV4hbmmKh23vsJlSWmvayzBnmo7RNxtfJqNd3lj8kODMvCmsrBCpd8ANlZBQLH7RkrgTJmc-4cqXPCiOEMQHISMnAk54vMZ7QUBRCCXQG2B5plVUJ-4RGpjAejyW4Og5MobERPG4gkia2_NoD0rbTn74uRDCmq5kf_lF_Rjb6o3Q4HQ6yuyOyaZfD3lx47Ji06rc5nCCW18Vps4KfScOc-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Electronic+Engineering+and+Information+Systems+%28EEISS%29&rft.atitle=Motor+Imagery+EEG+Signal+Recognition+Based+on+ACVAE+and+CNN-LSTM&rft.au=Hu%2C+Cunlin&rft.au=Ye%2C+Ye&rft.au=Li%2C+Jian&rft.au=Wang%2C+Hongliang&rft.date=2024-01-13&rft.pub=IEEE&rft.spage=197&rft.epage=202&rft_id=info:doi/10.1109%2FEEISS62553.2024.00042&rft.externalDocID=10607452