Online Multi-Object Tracking Based On Global Feature Enhancement Network And Historical Feature Complement Iteration

Multi-object tracking is an important part of computer vision and plays a crucial role in many real-world application scenarios. The existing integrated tracking framework loses the key features of the target when fusing features and iteratively updating the trajectory apparent features, resulting i...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Conference on Cognitive Computing and Complex Data (ICCD) pp. 69 - 76
Main Authors Ke, Zunwang, An, Puping, Wang, Gang, Zhang, Yugui
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-object tracking is an important part of computer vision and plays a crucial role in many real-world application scenarios. The existing integrated tracking framework loses the key features of the target when fusing features and iteratively updating the trajectory apparent features, resulting in tracking instability. In order to solve the above problems, this paper proposes an online multi-object tracking method based on global feature enhancement network and historical feature complement iteration. In this method, a dual global feature fusion unit is used to replace the global feature enhancement network of summation or splicing operation, which is used to extract more discriminative key features and enhance the recognition ability of objects in multiple scenes. In addition, the historical features are used to supplement the iterative mechanism, which introduces random features and average features from the historical appearance features stored in the trajectory as supplementary features to supplement the lack of object features in the current frame. Comprehensive experiments are carried out on MOT15, MOT16, MOT17, and MOT20 datasets, in which the MOTA score of 73.2% is achieved on MOT16 dataset, indicating that the proposed method has good tracking performance. Source code: http://github.com/Anbping/gfen-hfci
AbstractList Multi-object tracking is an important part of computer vision and plays a crucial role in many real-world application scenarios. The existing integrated tracking framework loses the key features of the target when fusing features and iteratively updating the trajectory apparent features, resulting in tracking instability. In order to solve the above problems, this paper proposes an online multi-object tracking method based on global feature enhancement network and historical feature complement iteration. In this method, a dual global feature fusion unit is used to replace the global feature enhancement network of summation or splicing operation, which is used to extract more discriminative key features and enhance the recognition ability of objects in multiple scenes. In addition, the historical features are used to supplement the iterative mechanism, which introduces random features and average features from the historical appearance features stored in the trajectory as supplementary features to supplement the lack of object features in the current frame. Comprehensive experiments are carried out on MOT15, MOT16, MOT17, and MOT20 datasets, in which the MOTA score of 73.2% is achieved on MOT16 dataset, indicating that the proposed method has good tracking performance. Source code: http://github.com/Anbping/gfen-hfci
Author Ke, Zunwang
An, Puping
Wang, Gang
Zhang, Yugui
Author_xml – sequence: 1
  givenname: Zunwang
  surname: Ke
  fullname: Ke, Zunwang
  email: kzwang@xju.edu.cn
  organization: Xinjiang University,School of Software,Urumqi,China
– sequence: 2
  givenname: Puping
  surname: An
  fullname: An, Puping
  email: a0506pp@163.com
  organization: Xinjiang University,School of Software,Urumqi,China
– sequence: 3
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  email: wanggangnit@nit.zju.edu.cn
  organization: NingboTech University,School of Computing and Data Engineering,Ningbo,China
– sequence: 4
  givenname: Yugui
  surname: Zhang
  fullname: Zhang, Yugui
  email: zhangyugui@semi.ac.cn
  organization: Chinese Academy of Sciences,Institute of Semiconductors,Beijing,China
BookMark eNpNkMtOwzAUBY0ECyj9AyT8Awl-xbGXJfQRqZBNWVeOcwOmjlM5rhB_D1JBYjWb0Ujn3KDLMAZA6J6SnFKiH-qqepJMUZozwkROiRJccnWB5rrUiheEF0xpcY1SE7wLgJ9PPrmsaT_AJryLxh5ceMOPZoIONwGv_dgaj1dg0ikCXoZ3EywMEBJ-gfQ5xgNehA5v3JTG6Ow_tRqHoz-bdYJokhvDLbrqjZ9g_ssZel0td9Um2zbrulpsM0dLmTLZEsMKwXtlW8KAaMaLtmRWMU5KUVgodUsNFSAEMClBElPoXisLPaXdz8wZujt3HQDsj9ENJn7t_87g3_1TWh0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCD62811.2024.10843638
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350352894
EndPage 76
ExternalDocumentID 10843638
Genre orig-research
GrantInformation_xml – fundername: Research and Development
  funderid: 10.13039/100006190
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-6b0a2543f8cb02e09235b72c8230745ce79b1a14e44e266e60a59f98cef11d983
IEDL.DBID RIE
IngestDate Wed Feb 12 06:22:39 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-6b0a2543f8cb02e09235b72c8230745ce79b1a14e44e266e60a59f98cef11d983
PageCount 8
ParticipantIDs ieee_primary_10843638
PublicationCentury 2000
PublicationDate 2024-Sept.-28
PublicationDateYYYYMMDD 2024-09-28
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-28
  day: 28
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Cognitive Computing and Complex Data (ICCD)
PublicationTitleAbbrev ICCD
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8872113
Snippet Multi-object tracking is an important part of computer vision and plays a crucial role in many real-world application scenarios. The existing integrated...
SourceID ieee
SourceType Publisher
StartPage 69
SubjectTerms Cognitive systems
Computational modeling
Computer vision
Deep learning
Feature extraction
Feature fusion
Historical feature complement iteration
Iterative methods
Multi object tracking (MOT)
Object tracking
Source coding
Splicing
Target tracking
Trajectory
Title Online Multi-Object Tracking Based On Global Feature Enhancement Network And Historical Feature Complement Iteration
URI https://ieeexplore.ieee.org/document/10843638
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl5bmzZpk6POjU1w8-Bgt9GkLyhCJ6O9-NcvL9kPFARvpQRS8pJ-ecn3fY-QO6HKymXHVWSlSiJuuYqkdlmrqBxapZZr47UwL5N8NOPPczHfiNW9FgYAPPkMYnz0d_nV0rR4VOZWuOSZmzAd0nGZWxBrbThbLFH3437_KU8lw7Qv5fG29Y-6KR42hkdksu0wsEU-47bRsfn-5cX47y86Jr29Qo--7rDnhBxAfUqa4BtKvag2mmo8YqEOjAweh9NHh1cVndY02PxT3Py1K6CD-h0jjx3RSSCF04e6onsDkV1T_HkEujkdezdmF9QemQ0Hb_1RtKmqEH2wIm-iXCclKuCtNDpJIXE7PKGL1OCNW8GFgUJpVjIOnINDb8iTUiirpAHLWKVkdka69bKGc0K5tQxwVXOsdpSVShcCCgvWzYss4_yC9HDIFl_BOGOxHa3LP95fkUOMHNIxUnlNus2qhRuH-Y2-9bFeA5PMrVg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgDDABoohvPLAmxImdxCOUVi20KUMrdati5ywQUoqqZOHX43P6IZCQ2KLIkiOfnXd3fu-OkDsh88JGx4VnUhl43HDppcpGraKwaBUarrTTwoyyuD_lzzMxW4nVnRYGABz5DHx8dHf5xULXmCqzJzzlkd0wu2TPAr9gjVxrxdpigbwfdDpPcZgyDPxC7q_H_-ic4oCjd0iy9ZQNX-TDryvl669f1Rj__U1HpL3V6NHXDfockx0oT0jVVA6lTlbrjRUmWaiFI40JcfpoEaug45I2hf4pun_1Emi3fEPb40Q0a2jh9KEs6LaEyGYo_j4awjkduHrM1qxtMu11J52-t-qr4L2zJK68WAU5auBNqlUQQmB9PKGSUOOdW8KFhkQqljMOnIPFb4iDXEgjUw2GsUKm0SlplYsSzgjlxjDAc82x31GUS5UISAwYuzOiiPNz0sYlm382pTPm69W6-OP9LdnvT0bD-XCQvVySA7QikjPC9Iq0qmUN19YDqNSNs_s3y3uwoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Cognitive+Computing+and+Complex+Data+%28ICCD%29&rft.atitle=Online+Multi-Object+Tracking+Based+On+Global+Feature+Enhancement+Network+And+Historical+Feature+Complement+Iteration&rft.au=Ke%2C+Zunwang&rft.au=An%2C+Puping&rft.au=Wang%2C+Gang&rft.au=Zhang%2C+Yugui&rft.date=2024-09-28&rft.pub=IEEE&rft.spage=69&rft.epage=76&rft_id=info:doi/10.1109%2FICCD62811.2024.10843638&rft.externalDocID=10843638