Research on Factor Graph-based SLAM Localization Algorithm for Multi-source Sensor Fusion

A multi-sensor tightly coupled localization algorithm based on a factor graph is proposed to address the challenges of low single-sensor localization accuracy and insufficient robustness of mobile robots in outdoor environments. The algorithm incorporates Inertial Measurement Unit (IMU) data at the...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Conference on Cognitive Computing and Complex Data (ICCD) pp. 294 - 301
Main Authors Ma, Tao, Zhu, Liucun, Wu, Xiao, Chen, Sijie, Wang, Nanxiang
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.09.2024
Subjects
Online AccessGet full text
DOI10.1109/ICCD62811.2024.10843557

Cover

Loading…
Abstract A multi-sensor tightly coupled localization algorithm based on a factor graph is proposed to address the challenges of low single-sensor localization accuracy and insufficient robustness of mobile robots in outdoor environments. The algorithm incorporates Inertial Measurement Unit (IMU) data at the front end for point cloud de-distortion. It utilizes the IMU pre-integration result as the initial position to enhance point cloud alignment accuracy, thereby improving the overall position estimation of the robot. The back end constructs the IMU pre-integration factor, Lidar odometry factor, Global Navigation Satellite System (GNSS) factor, and loop closure detection factor through a factor graph, and outputs the robot's state information through incremental optimization. Test results on the M2DGR dataset demonstrate that the algorithm significantly enhances localization accuracy and robustness in both closed-loop and open-loop outdoor scenarios.
AbstractList A multi-sensor tightly coupled localization algorithm based on a factor graph is proposed to address the challenges of low single-sensor localization accuracy and insufficient robustness of mobile robots in outdoor environments. The algorithm incorporates Inertial Measurement Unit (IMU) data at the front end for point cloud de-distortion. It utilizes the IMU pre-integration result as the initial position to enhance point cloud alignment accuracy, thereby improving the overall position estimation of the robot. The back end constructs the IMU pre-integration factor, Lidar odometry factor, Global Navigation Satellite System (GNSS) factor, and loop closure detection factor through a factor graph, and outputs the robot's state information through incremental optimization. Test results on the M2DGR dataset demonstrate that the algorithm significantly enhances localization accuracy and robustness in both closed-loop and open-loop outdoor scenarios.
Author Wu, Xiao
Wang, Nanxiang
Zhu, Liucun
Ma, Tao
Chen, Sijie
Author_xml – sequence: 1
  givenname: Tao
  surname: Ma
  fullname: Ma, Tao
  email: ma092218@outlook.com
  organization: Beibu Gulf University,Advanced Science and Technology Research Institute,Qinzhou,China
– sequence: 2
  givenname: Liucun
  surname: Zhu
  fullname: Zhu, Liucun
  email: lczhu@bbgu.edu.cn
  organization: Beibu Gulf University,Advanced Science and Technology Research Institute,Qinzhou,China
– sequence: 3
  givenname: Xiao
  surname: Wu
  fullname: Wu, Xiao
  email: wu774377@foxmail.com
  organization: Beibu Gulf University,Advanced Science and Technology Research Institute,Qinzhou,China
– sequence: 4
  givenname: Sijie
  surname: Chen
  fullname: Chen, Sijie
  email: chensj19992024@163.com
  organization: Beibu Gulf University,Advanced Science and Technology Research Institute,Qinzhou,China
– sequence: 5
  givenname: Nanxiang
  surname: Wang
  fullname: Wang, Nanxiang
  email: dndtdnln@163.com
  organization: Beibu Gulf University,Advanced Science and Technology Research Institute,Qinzhou,China
BookMark eNo1j81KxDAUhSPoQsd5A8G8QGv-2qbLUp1xoIPg6MLVcJvc2kCnGZJ2oU9vQV0dOHx8nHNDLkc_IiH3nKWcs_JhV9ePudCcp4IJlXKmlcyy4oKsy6LUMmMyE7pU1-TjFSNCMD31I92AmXyg2wDnPmkhoqWHptrTxhsY3DdMboGq4dMHN_Un2i3sfh4ml0Q_B4P0gGNcus0cF_CWXHUwRFz_5Yq8b57e6uekednu6qpJHC_yKcnBGlFgLjWarODWMpFLLqxQjOGyFLQUYDsBvBXIOg4GjDJGK91yLY2WK3L363WIeDwHd4Lwdfx_LH8Aq8RQzQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCD62811.2024.10843557
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350352894
EndPage 301
ExternalDocumentID 10843557
Genre orig-research
GrantInformation_xml – fundername: Bagui Scholars Program of Guangxi Zhuang Autonomous Region
  funderid: 10.13039/501100018593
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-6adc27e638ec571dd026312d2400e835a832adf2a1b2e0f1acac4cc848b183c83
IEDL.DBID RIE
IngestDate Wed Feb 12 06:22:39 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-6adc27e638ec571dd026312d2400e835a832adf2a1b2e0f1acac4cc848b183c83
PageCount 8
ParticipantIDs ieee_primary_10843557
PublicationCentury 2000
PublicationDate 2024-Sept.-28
PublicationDateYYYYMMDD 2024-09-28
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-28
  day: 28
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Cognitive Computing and Complex Data (ICCD)
PublicationTitleAbbrev ICCD
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8870456
Snippet A multi-sensor tightly coupled localization algorithm based on a factor graph is proposed to address the challenges of low single-sensor localization accuracy...
SourceID ieee
SourceType Publisher
StartPage 294
SubjectTerms Accuracy
Estimation
factor graph
Global navigation satellite system
Laser radar
localization
Location awareness
multi-sensor
Point cloud compression
Robustness
Sensor fusion
Simultaneous localization and mapping
tight coupling
Trajectory
Title Research on Factor Graph-based SLAM Localization Algorithm for Multi-source Sensor Fusion
URI https://ieeexplore.ieee.org/document/10843557
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9esm8dms8dSXau0RaiFeip5rRZ1V8ruxV9vsg9FQfAWQiAhYfgyM983A8BFxONQKSuR4IYihkOBJI0sopwlVIdEycxndKczPl6wu2W0bMXqtRbGWluTz2zgh3Uu3xS68qEyZ-HCoXsU90DPeW6NWKvlbOEwubwdja44Edi7fYQF3eoffVNq2Eh3wKzbsGGLvARVqQL98asW479PtAsG3wo9eP-FPXtgy-b74LGj0cEih2ndSAfe-ILUyGOVgfPJcAonHrxa8SUcvj4Vm3X5_Abd3xXWYlzUhPPh3Pm3bi6tfDhtABbp9cNojNrWCWiNY14iLo0msXXGZXUUY2Ocq0UxMZ4xat2nSzpDliYjEitiwwxLLTXTWjChnI1rQQ9APy9yewhgFMtEUJvYzKeDM6pYxNyijJOYGKnFERj4e1m9N9UxVt2VHP8xfwK2_fN4zgURp6Bfbip75oC9VOf1g34C-BCkCQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLxm3SS72eyxVGvVbRHaQj2VvFaLuitl9-KvN9mHoiB4CyGQkDB8mZnvmwHgImSRL6URiDNNUYB9jgQNDaIsiKnyiRSpy-iOxmw4C-7m4bwRq1daGGNMRT4znhtWuXydq9KFyqyFc4vuYbQONizwh7iWazWsLezHl7f9_hUjHDvHjwReu_5H55QKOAbbYNxuWfNFXryykJ76-FWN8d9n2gHdb40efPhCn12wZrI98NgS6WCewUHVSgfeuJLUyKGVhpOkN4KJg69Gfgl7r0_5alk8v0H7e4WVHBfVAX04sR6unRuULqDWBbPB9bQ_RE3zBLTEESsQE1qRyFjzMiqMsNbW2aKYaMcZNfbbJawpC50SgSUxfoqFEipQigdcWitXnO6DTpZn5gDAMBIxpyY2qUsIp1QGYWAXpYxERAvFD0HX3cviva6PsWiv5OiP-XOwOZyOkkVyO74_BlvuqRwDg_AT0ClWpTm1MF_Is-pxPwG2SKdS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Cognitive+Computing+and+Complex+Data+%28ICCD%29&rft.atitle=Research+on+Factor+Graph-based+SLAM+Localization+Algorithm+for+Multi-source+Sensor+Fusion&rft.au=Ma%2C+Tao&rft.au=Zhu%2C+Liucun&rft.au=Wu%2C+Xiao&rft.au=Chen%2C+Sijie&rft.date=2024-09-28&rft.pub=IEEE&rft.spage=294&rft.epage=301&rft_id=info:doi/10.1109%2FICCD62811.2024.10843557&rft.externalDocID=10843557