Research on Factor Graph-based SLAM Localization Algorithm for Multi-source Sensor Fusion
A multi-sensor tightly coupled localization algorithm based on a factor graph is proposed to address the challenges of low single-sensor localization accuracy and insufficient robustness of mobile robots in outdoor environments. The algorithm incorporates Inertial Measurement Unit (IMU) data at the...
Saved in:
Published in | 2024 IEEE International Conference on Cognitive Computing and Complex Data (ICCD) pp. 294 - 301 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
28.09.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICCD62811.2024.10843557 |
Cover
Loading…
Abstract | A multi-sensor tightly coupled localization algorithm based on a factor graph is proposed to address the challenges of low single-sensor localization accuracy and insufficient robustness of mobile robots in outdoor environments. The algorithm incorporates Inertial Measurement Unit (IMU) data at the front end for point cloud de-distortion. It utilizes the IMU pre-integration result as the initial position to enhance point cloud alignment accuracy, thereby improving the overall position estimation of the robot. The back end constructs the IMU pre-integration factor, Lidar odometry factor, Global Navigation Satellite System (GNSS) factor, and loop closure detection factor through a factor graph, and outputs the robot's state information through incremental optimization. Test results on the M2DGR dataset demonstrate that the algorithm significantly enhances localization accuracy and robustness in both closed-loop and open-loop outdoor scenarios. |
---|---|
AbstractList | A multi-sensor tightly coupled localization algorithm based on a factor graph is proposed to address the challenges of low single-sensor localization accuracy and insufficient robustness of mobile robots in outdoor environments. The algorithm incorporates Inertial Measurement Unit (IMU) data at the front end for point cloud de-distortion. It utilizes the IMU pre-integration result as the initial position to enhance point cloud alignment accuracy, thereby improving the overall position estimation of the robot. The back end constructs the IMU pre-integration factor, Lidar odometry factor, Global Navigation Satellite System (GNSS) factor, and loop closure detection factor through a factor graph, and outputs the robot's state information through incremental optimization. Test results on the M2DGR dataset demonstrate that the algorithm significantly enhances localization accuracy and robustness in both closed-loop and open-loop outdoor scenarios. |
Author | Wu, Xiao Wang, Nanxiang Zhu, Liucun Ma, Tao Chen, Sijie |
Author_xml | – sequence: 1 givenname: Tao surname: Ma fullname: Ma, Tao email: ma092218@outlook.com organization: Beibu Gulf University,Advanced Science and Technology Research Institute,Qinzhou,China – sequence: 2 givenname: Liucun surname: Zhu fullname: Zhu, Liucun email: lczhu@bbgu.edu.cn organization: Beibu Gulf University,Advanced Science and Technology Research Institute,Qinzhou,China – sequence: 3 givenname: Xiao surname: Wu fullname: Wu, Xiao email: wu774377@foxmail.com organization: Beibu Gulf University,Advanced Science and Technology Research Institute,Qinzhou,China – sequence: 4 givenname: Sijie surname: Chen fullname: Chen, Sijie email: chensj19992024@163.com organization: Beibu Gulf University,Advanced Science and Technology Research Institute,Qinzhou,China – sequence: 5 givenname: Nanxiang surname: Wang fullname: Wang, Nanxiang email: dndtdnln@163.com organization: Beibu Gulf University,Advanced Science and Technology Research Institute,Qinzhou,China |
BookMark | eNo1j81KxDAUhSPoQsd5A8G8QGv-2qbLUp1xoIPg6MLVcJvc2kCnGZJ2oU9vQV0dOHx8nHNDLkc_IiH3nKWcs_JhV9ePudCcp4IJlXKmlcyy4oKsy6LUMmMyE7pU1-TjFSNCMD31I92AmXyg2wDnPmkhoqWHptrTxhsY3DdMboGq4dMHN_Un2i3sfh4ml0Q_B4P0gGNcus0cF_CWXHUwRFz_5Yq8b57e6uekednu6qpJHC_yKcnBGlFgLjWarODWMpFLLqxQjOGyFLQUYDsBvBXIOg4GjDJGK91yLY2WK3L363WIeDwHd4Lwdfx_LH8Aq8RQzQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCD62811.2024.10843557 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350352894 |
EndPage | 301 |
ExternalDocumentID | 10843557 |
Genre | orig-research |
GrantInformation_xml | – fundername: Bagui Scholars Program of Guangxi Zhuang Autonomous Region funderid: 10.13039/501100018593 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i176t-6adc27e638ec571dd026312d2400e835a832adf2a1b2e0f1acac4cc848b183c83 |
IEDL.DBID | RIE |
IngestDate | Wed Feb 12 06:22:39 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-6adc27e638ec571dd026312d2400e835a832adf2a1b2e0f1acac4cc848b183c83 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10843557 |
PublicationCentury | 2000 |
PublicationDate | 2024-Sept.-28 |
PublicationDateYYYYMMDD | 2024-09-28 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sept.-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE International Conference on Cognitive Computing and Complex Data (ICCD) |
PublicationTitleAbbrev | ICCD |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8870456 |
Snippet | A multi-sensor tightly coupled localization algorithm based on a factor graph is proposed to address the challenges of low single-sensor localization accuracy... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 294 |
SubjectTerms | Accuracy Estimation factor graph Global navigation satellite system Laser radar localization Location awareness multi-sensor Point cloud compression Robustness Sensor fusion Simultaneous localization and mapping tight coupling Trajectory |
Title | Research on Factor Graph-based SLAM Localization Algorithm for Multi-source Sensor Fusion |
URI | https://ieeexplore.ieee.org/document/10843557 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9esm8dms8dSXau0RaiFeip5rRZ1V8ruxV9vsg9FQfAWQiAhYfgyM983A8BFxONQKSuR4IYihkOBJI0sopwlVIdEycxndKczPl6wu2W0bMXqtRbGWluTz2zgh3Uu3xS68qEyZ-HCoXsU90DPeW6NWKvlbOEwubwdja44Edi7fYQF3eoffVNq2Eh3wKzbsGGLvARVqQL98asW479PtAsG3wo9eP-FPXtgy-b74LGj0cEih2ndSAfe-ILUyGOVgfPJcAonHrxa8SUcvj4Vm3X5_Abd3xXWYlzUhPPh3Pm3bi6tfDhtABbp9cNojNrWCWiNY14iLo0msXXGZXUUY2Ocq0UxMZ4xat2nSzpDliYjEitiwwxLLTXTWjChnI1rQQ9APy9yewhgFMtEUJvYzKeDM6pYxNyijJOYGKnFERj4e1m9N9UxVt2VHP8xfwK2_fN4zgURp6Bfbip75oC9VOf1g34C-BCkCQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLxm3SS72eyxVGvVbRHaQj2VvFaLuitl9-KvN9mHoiB4CyGQkDB8mZnvmwHgImSRL6URiDNNUYB9jgQNDaIsiKnyiRSpy-iOxmw4C-7m4bwRq1daGGNMRT4znhtWuXydq9KFyqyFc4vuYbQONizwh7iWazWsLezHl7f9_hUjHDvHjwReu_5H55QKOAbbYNxuWfNFXryykJ76-FWN8d9n2gHdb40efPhCn12wZrI98NgS6WCewUHVSgfeuJLUyKGVhpOkN4KJg69Gfgl7r0_5alk8v0H7e4WVHBfVAX04sR6unRuULqDWBbPB9bQ_RE3zBLTEESsQE1qRyFjzMiqMsNbW2aKYaMcZNfbbJawpC50SgSUxfoqFEipQigdcWitXnO6DTpZn5gDAMBIxpyY2qUsIp1QGYWAXpYxERAvFD0HX3cviva6PsWiv5OiP-XOwOZyOkkVyO74_BlvuqRwDg_AT0ClWpTm1MF_Is-pxPwG2SKdS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Cognitive+Computing+and+Complex+Data+%28ICCD%29&rft.atitle=Research+on+Factor+Graph-based+SLAM+Localization+Algorithm+for+Multi-source+Sensor+Fusion&rft.au=Ma%2C+Tao&rft.au=Zhu%2C+Liucun&rft.au=Wu%2C+Xiao&rft.au=Chen%2C+Sijie&rft.date=2024-09-28&rft.pub=IEEE&rft.spage=294&rft.epage=301&rft_id=info:doi/10.1109%2FICCD62811.2024.10843557&rft.externalDocID=10843557 |