Investigation of Elderly Patient Actimetries for Night Sleep/Wake Phases Prediction
This paper presents a Machine Learning (ML) application that involves Long Short-Term Memory (LSTM) Artificial Neural Network (ANN). The proposed LSTM-ANN. architecture addresses the prediction challenge of sleep/wake phases in order to minimize night wake stages in elderly patients. Accurate predic...
Saved in:
Published in | International Conference on Control, Decision and Information Technologies (Online) pp. 2633 - 2638 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a Machine Learning (ML) application that involves Long Short-Term Memory (LSTM) Artificial Neural Network (ANN). The proposed LSTM-ANN. architecture addresses the prediction challenge of sleep/wake phases in order to minimize night wake stages in elderly patients. Accurate predictions guarantee a good sleep quality for elderly patients and support medication adherence. For this, Vivago® Care watch technology (IST Vivago® Oy) is used in this work. Each watch was advantaged by actimetric functionality. Watches were worn on the wrist of the considered elderly patients. Automatically, one recording was sent every minute to the base station located in the nursery room, where the recorded data are stored and backed up. Experimental results are encouraging and also they are a rationale and evidence for the allocation of investments for developing online monitoring systems for sleep/wake phase's prediction using only previous historical data. Our proposed LSTM-ANN proposal despite the novelty of this subject and the lack of literature, highlights prototypes results. is accurate for Personal Health Management (PHM) applications. |
---|---|
AbstractList | This paper presents a Machine Learning (ML) application that involves Long Short-Term Memory (LSTM) Artificial Neural Network (ANN). The proposed LSTM-ANN. architecture addresses the prediction challenge of sleep/wake phases in order to minimize night wake stages in elderly patients. Accurate predictions guarantee a good sleep quality for elderly patients and support medication adherence. For this, Vivago® Care watch technology (IST Vivago® Oy) is used in this work. Each watch was advantaged by actimetric functionality. Watches were worn on the wrist of the considered elderly patients. Automatically, one recording was sent every minute to the base station located in the nursery room, where the recorded data are stored and backed up. Experimental results are encouraging and also they are a rationale and evidence for the allocation of investments for developing online monitoring systems for sleep/wake phase's prediction using only previous historical data. Our proposed LSTM-ANN proposal despite the novelty of this subject and the lack of literature, highlights prototypes results. is accurate for Personal Health Management (PHM) applications. |
Author | Zard, Radjia Belmin, Joel Bouchouicha, Moez Naeck, Roomila Laamiri, Nacira Ali, Jaouher Ben Ginoux, Jean-Mark |
Author_xml | – sequence: 1 givenname: Radjia surname: Zard fullname: Zard, Radjia organization: Université de Toulon,Laboratoire d'Informatique et des Systèmes, UMR, CNRS 7020, Ecole d'Ingénieurs SeaTech,France – sequence: 2 givenname: Jaouher Ben surname: Ali fullname: Ali, Jaouher Ben email: benalijaouher@yahoo.fr organization: University of Tunis,ENSIT, LABO SIME,Tunis,Tunisia – sequence: 3 givenname: Nacira surname: Laamiri fullname: Laamiri, Nacira organization: Mohamed Taher Maamouri University Hospital,Nabeul,Tunisia,8000 – sequence: 4 givenname: Joel surname: Belmin fullname: Belmin, Joel organization: Hôpital Universitaire Charles Foix (HU Pitié-Salpêtrière - Charles Foix), AP-HP, et Sorbonne Université – sequence: 5 givenname: Moez surname: Bouchouicha fullname: Bouchouicha, Moez organization: Université de Toulon,Laboratoire d'Informatique et des Systèmes, UMR, CNRS 7020, Ecole d'Ingénieurs SeaTech,France – sequence: 6 givenname: Roomila surname: Naeck fullname: Naeck, Roomila organization: Novatech, SA,La Ciotat,France,13600 – sequence: 7 givenname: Jean-Mark surname: Ginoux fullname: Ginoux, Jean-Mark organization: National Institute of Optics - CNR,Florence,Italy |
BookMark | eNo1kM1Kw0AUhUdRsNa8gYt5gbR3_pNlqVUDRQutuCyTmTvtaJqUZBD69lbU1YHvwAfn3JKrtmuREMpgwhiU03n3UG00B60nHLicMDBQqIJfkKw0ZSEUCCNKIy_JiCujc6GUuiHZMHwAgGAlAOcjsq7aLxxS3NkUu5Z2gS4aj31zoqszwTbRmUvxgKmPONDQ9fQl7vaJrhvE4_TdfiJd7e1w7lY9-uh-LHfkOthmwOwvx-TtcbGZP-fL16dqPlvmkRmdci29qsvai6AKBszX3EuDVnrwjBnOvbH6PEijcUYEzqTlTtfB164GJ4MTY3L_642IuD328WD70_b_B_ENm_1VSg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CoDIT62066.2024.10708582 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798350373974 |
EISSN | 2576-3555 |
EndPage | 2638 |
ExternalDocumentID | 10708582 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i176t-64d5b9bd3f58101db2d47ea4d0d11722d7a68586e7c73f214a2c6bfdbcb0c4fc3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:17:14 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-64d5b9bd3f58101db2d47ea4d0d11722d7a68586e7c73f214a2c6bfdbcb0c4fc3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10708582 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-1 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-1 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Control, Decision and Information Technologies (Online) |
PublicationTitleAbbrev | CoDIT |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003190022 |
Score | 1.8777717 |
Snippet | This paper presents a Machine Learning (ML) application that involves Long Short-Term Memory (LSTM) Artificial Neural Network (ANN). The proposed LSTM-ANN.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2633 |
SubjectTerms | Accuracy Actimetry Brain modeling Electroencephalography Electrooculography Long short term memory LSTM-ANN Machine learning Older adults PHM Prediction Predictive models Prognostics and health management Sleep Sleep/Wake phases |
Title | Investigation of Elderly Patient Actimetries for Night Sleep/Wake Phases Prediction |
URI | https://ieeexplore.ieee.org/document/10708582 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVtTj2lS0p3dOjVji3Lkn0saUJaaAgkobkFLSNaEuzQOIf26yt5SRco9GYEtoTk0ZuRZt5D6FZSLQMuwFpayj2LeMZLWQKeVCwQhIkwil018tOIDWf0cR7P62L1shYGAMrkM_DdY3mXr3O1dUdl1sK59RASu-Pu28itKtbaHajYf8kBUpOtE6TdXn7_MGWOr9zGgYT6zes_hFRKHBm00agZQZU-svS3hfTVxy9yxn8P8RB1vkr28HgHRkdoD7Jj1G40G3Btwido8o1YI89wbnDf6XSv3vG4YljFd8rpzTudrQ22Hi0eufAdT1YA6-6zWNpuXizybWxv7o7HfaWDZoP-tDf0amEF7zXkrPAY1bFMpY5M7Pi9tCSachBUBzq0Dg3RXDhaegZc8ciQkAqimDRaKhkoalR0ilpZnsEZwtpwkoSRIkkSU865FIFMGYACo61nl56jjpukxbrizlg083PxR_slOnBrVSXEXqFW8baFawv7hbwpl_sTe8ytUw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGG0MPugTXjDe7YOvG7t07fZoEIIKCwkQeSO9fI0GshGBB_31thvDS2Li27KHtmn37Xxtv3MOQreCKOExDibSEuYYxNNOQmNwhKQeDyj3w8iykfsp7Y7J4ySabMjqBRcGAIriM3DtY3GXr3K5tkdlJsKZyRBi88fdNcAf-SVda3ukYr4mC0lVvY6XNFv5_cOIWsVysxMMiFs18MNKpUCSTh2l1RjKApKZu14JV378kmf89yAPUOOLtIcHWzg6RDuQHaF65dqAN0F8jIbfpDXyDOcat61T9_wdD0qNVXwnreO8ddpaYpPT4tRu4PFwDrBoPvOZ6ebFYN_S9GZveWwrDTTutEetrrOxVnBefUZXDiUqEolQoY6swpcSgSIMOFGe8k1KEyjGrTA9BSZZqAOf8EBSoZWQwpNEy_AE1bI8g1OElWZB7IcyiOOIMMYE90RCASRoZXK75Aw17CRNF6V6xrSan_M_3t-gve6o35v2HtKnC7Rv160sj71EtdXbGq5MErAS18XSfwK1nLCc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Decision+and+Information+Technologies+%28Online%29&rft.atitle=Investigation+of+Elderly+Patient+Actimetries+for+Night+Sleep%2FWake+Phases+Prediction&rft.au=Zard%2C+Radjia&rft.au=Ali%2C+Jaouher+Ben&rft.au=Laamiri%2C+Nacira&rft.au=Belmin%2C+Joel&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=2576-3555&rft.spage=2633&rft.epage=2638&rft_id=info:doi/10.1109%2FCoDIT62066.2024.10708582&rft.externalDocID=10708582 |