Investigation of Elderly Patient Actimetries for Night Sleep/Wake Phases Prediction

This paper presents a Machine Learning (ML) application that involves Long Short-Term Memory (LSTM) Artificial Neural Network (ANN). The proposed LSTM-ANN. architecture addresses the prediction challenge of sleep/wake phases in order to minimize night wake stages in elderly patients. Accurate predic...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Control, Decision and Information Technologies (Online) pp. 2633 - 2638
Main Authors Zard, Radjia, Ali, Jaouher Ben, Laamiri, Nacira, Belmin, Joel, Bouchouicha, Moez, Naeck, Roomila, Ginoux, Jean-Mark
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a Machine Learning (ML) application that involves Long Short-Term Memory (LSTM) Artificial Neural Network (ANN). The proposed LSTM-ANN. architecture addresses the prediction challenge of sleep/wake phases in order to minimize night wake stages in elderly patients. Accurate predictions guarantee a good sleep quality for elderly patients and support medication adherence. For this, Vivago® Care watch technology (IST Vivago® Oy) is used in this work. Each watch was advantaged by actimetric functionality. Watches were worn on the wrist of the considered elderly patients. Automatically, one recording was sent every minute to the base station located in the nursery room, where the recorded data are stored and backed up. Experimental results are encouraging and also they are a rationale and evidence for the allocation of investments for developing online monitoring systems for sleep/wake phase's prediction using only previous historical data. Our proposed LSTM-ANN proposal despite the novelty of this subject and the lack of literature, highlights prototypes results. is accurate for Personal Health Management (PHM) applications.
AbstractList This paper presents a Machine Learning (ML) application that involves Long Short-Term Memory (LSTM) Artificial Neural Network (ANN). The proposed LSTM-ANN. architecture addresses the prediction challenge of sleep/wake phases in order to minimize night wake stages in elderly patients. Accurate predictions guarantee a good sleep quality for elderly patients and support medication adherence. For this, Vivago® Care watch technology (IST Vivago® Oy) is used in this work. Each watch was advantaged by actimetric functionality. Watches were worn on the wrist of the considered elderly patients. Automatically, one recording was sent every minute to the base station located in the nursery room, where the recorded data are stored and backed up. Experimental results are encouraging and also they are a rationale and evidence for the allocation of investments for developing online monitoring systems for sleep/wake phase's prediction using only previous historical data. Our proposed LSTM-ANN proposal despite the novelty of this subject and the lack of literature, highlights prototypes results. is accurate for Personal Health Management (PHM) applications.
Author Zard, Radjia
Belmin, Joel
Bouchouicha, Moez
Naeck, Roomila
Laamiri, Nacira
Ali, Jaouher Ben
Ginoux, Jean-Mark
Author_xml – sequence: 1
  givenname: Radjia
  surname: Zard
  fullname: Zard, Radjia
  organization: Université de Toulon,Laboratoire d'Informatique et des Systèmes, UMR, CNRS 7020, Ecole d'Ingénieurs SeaTech,France
– sequence: 2
  givenname: Jaouher Ben
  surname: Ali
  fullname: Ali, Jaouher Ben
  email: benalijaouher@yahoo.fr
  organization: University of Tunis,ENSIT, LABO SIME,Tunis,Tunisia
– sequence: 3
  givenname: Nacira
  surname: Laamiri
  fullname: Laamiri, Nacira
  organization: Mohamed Taher Maamouri University Hospital,Nabeul,Tunisia,8000
– sequence: 4
  givenname: Joel
  surname: Belmin
  fullname: Belmin, Joel
  organization: Hôpital Universitaire Charles Foix (HU Pitié-Salpêtrière - Charles Foix), AP-HP, et Sorbonne Université
– sequence: 5
  givenname: Moez
  surname: Bouchouicha
  fullname: Bouchouicha, Moez
  organization: Université de Toulon,Laboratoire d'Informatique et des Systèmes, UMR, CNRS 7020, Ecole d'Ingénieurs SeaTech,France
– sequence: 6
  givenname: Roomila
  surname: Naeck
  fullname: Naeck, Roomila
  organization: Novatech, SA,La Ciotat,France,13600
– sequence: 7
  givenname: Jean-Mark
  surname: Ginoux
  fullname: Ginoux, Jean-Mark
  organization: National Institute of Optics - CNR,Florence,Italy
BookMark eNo1kM1Kw0AUhUdRsNa8gYt5gbR3_pNlqVUDRQutuCyTmTvtaJqUZBD69lbU1YHvwAfn3JKrtmuREMpgwhiU03n3UG00B60nHLicMDBQqIJfkKw0ZSEUCCNKIy_JiCujc6GUuiHZMHwAgGAlAOcjsq7aLxxS3NkUu5Z2gS4aj31zoqszwTbRmUvxgKmPONDQ9fQl7vaJrhvE4_TdfiJd7e1w7lY9-uh-LHfkOthmwOwvx-TtcbGZP-fL16dqPlvmkRmdci29qsvai6AKBszX3EuDVnrwjBnOvbH6PEijcUYEzqTlTtfB164GJ4MTY3L_642IuD328WD70_b_B_ENm_1VSg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CoDIT62066.2024.10708582
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350373974
EISSN 2576-3555
EndPage 2638
ExternalDocumentID 10708582
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-64d5b9bd3f58101db2d47ea4d0d11722d7a68586e7c73f214a2c6bfdbcb0c4fc3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:17:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-64d5b9bd3f58101db2d47ea4d0d11722d7a68586e7c73f214a2c6bfdbcb0c4fc3
PageCount 6
ParticipantIDs ieee_primary_10708582
PublicationCentury 2000
PublicationDate 2024-July-1
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-1
  day: 01
PublicationDecade 2020
PublicationTitle International Conference on Control, Decision and Information Technologies (Online)
PublicationTitleAbbrev CoDIT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190022
Score 1.8777717
Snippet This paper presents a Machine Learning (ML) application that involves Long Short-Term Memory (LSTM) Artificial Neural Network (ANN). The proposed LSTM-ANN....
SourceID ieee
SourceType Publisher
StartPage 2633
SubjectTerms Accuracy
Actimetry
Brain modeling
Electroencephalography
Electrooculography
Long short term memory
LSTM-ANN
Machine learning
Older adults
PHM
Prediction
Predictive models
Prognostics and health management
Sleep
Sleep/Wake phases
Title Investigation of Elderly Patient Actimetries for Night Sleep/Wake Phases Prediction
URI https://ieeexplore.ieee.org/document/10708582
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVtTj2lS0p3dOjVji3Lkn0saUJaaAgkobkFLSNaEuzQOIf26yt5SRco9GYEtoTk0ZuRZt5D6FZSLQMuwFpayj2LeMZLWQKeVCwQhIkwil018tOIDWf0cR7P62L1shYGAMrkM_DdY3mXr3O1dUdl1sK59RASu-Pu28itKtbaHajYf8kBUpOtE6TdXn7_MGWOr9zGgYT6zes_hFRKHBm00agZQZU-svS3hfTVxy9yxn8P8RB1vkr28HgHRkdoD7Jj1G40G3Btwido8o1YI89wbnDf6XSv3vG4YljFd8rpzTudrQ22Hi0eufAdT1YA6-6zWNpuXizybWxv7o7HfaWDZoP-tDf0amEF7zXkrPAY1bFMpY5M7Pi9tCSachBUBzq0Dg3RXDhaegZc8ciQkAqimDRaKhkoalR0ilpZnsEZwtpwkoSRIkkSU865FIFMGYACo61nl56jjpukxbrizlg083PxR_slOnBrVSXEXqFW8baFawv7hbwpl_sTe8ytUw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGG0MPugTXjDe7YOvG7t07fZoEIIKCwkQeSO9fI0GshGBB_31thvDS2Li27KHtmn37Xxtv3MOQreCKOExDibSEuYYxNNOQmNwhKQeDyj3w8iykfsp7Y7J4ySabMjqBRcGAIriM3DtY3GXr3K5tkdlJsKZyRBi88fdNcAf-SVda3ukYr4mC0lVvY6XNFv5_cOIWsVysxMMiFs18MNKpUCSTh2l1RjKApKZu14JV378kmf89yAPUOOLtIcHWzg6RDuQHaF65dqAN0F8jIbfpDXyDOcat61T9_wdD0qNVXwnreO8ddpaYpPT4tRu4PFwDrBoPvOZ6ebFYN_S9GZveWwrDTTutEetrrOxVnBefUZXDiUqEolQoY6swpcSgSIMOFGe8k1KEyjGrTA9BSZZqAOf8EBSoZWQwpNEy_AE1bI8g1OElWZB7IcyiOOIMMYE90RCASRoZXK75Aw17CRNF6V6xrSan_M_3t-gve6o35v2HtKnC7Rv160sj71EtdXbGq5MErAS18XSfwK1nLCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Decision+and+Information+Technologies+%28Online%29&rft.atitle=Investigation+of+Elderly+Patient+Actimetries+for+Night+Sleep%2FWake+Phases+Prediction&rft.au=Zard%2C+Radjia&rft.au=Ali%2C+Jaouher+Ben&rft.au=Laamiri%2C+Nacira&rft.au=Belmin%2C+Joel&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=2576-3555&rft.spage=2633&rft.epage=2638&rft_id=info:doi/10.1109%2FCoDIT62066.2024.10708582&rft.externalDocID=10708582