An Elbow Bilateral Rehabilitation System Based on Surface Electromyogram: Design and Validation

Recent years have witnessed the promising future of surface electromyography (sEMG)-based motion intention recognition technology in the intelligent control of rehabilitation exoskeletons. In this paper, we propose an elbow bilateral rehabilitation system (EBRS) based on sEMG, which achieves continu...

Full description

Saved in:
Bibliographic Details
Published inIEEE Conference on Industrial Electronics and Applications (Online) pp. 1 - 6
Main Authors Shen, Cheng, Pei, Zhongcai, Zhang, Jing, Li, Zhongyi, Zhang, Yue, Chen, Weihai
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent years have witnessed the promising future of surface electromyography (sEMG)-based motion intention recognition technology in the intelligent control of rehabilitation exoskeletons. In this paper, we propose an elbow bilateral rehabilitation system (EBRS) based on sEMG, which achieves continuous tracking of the healthy limb movement intention by the affected limb. We develop the hardware and control system for the EBRS. Additionally, we explore various combinations of nine sEMG features with three regression algorithms to identify the optimal combination for estimating elbow joint angles. Experimental results with subjects showed that utilizing the Generalized Regression Neural Network (GRNN) in combination with Root Mean Square (RMS) and Waveform Length (WL) features yielded the second-bast regression performance (RMSE: 0.903; R2: 0.999). Furthermore, experiments conducted with the EBRS revealed that the affected limb was capable of accurately tracking the continuous movement of the healthy limb. This synchronization and coordination facilitated efficient upper limb rehabilitation.
AbstractList Recent years have witnessed the promising future of surface electromyography (sEMG)-based motion intention recognition technology in the intelligent control of rehabilitation exoskeletons. In this paper, we propose an elbow bilateral rehabilitation system (EBRS) based on sEMG, which achieves continuous tracking of the healthy limb movement intention by the affected limb. We develop the hardware and control system for the EBRS. Additionally, we explore various combinations of nine sEMG features with three regression algorithms to identify the optimal combination for estimating elbow joint angles. Experimental results with subjects showed that utilizing the Generalized Regression Neural Network (GRNN) in combination with Root Mean Square (RMS) and Waveform Length (WL) features yielded the second-bast regression performance (RMSE: 0.903; R2: 0.999). Furthermore, experiments conducted with the EBRS revealed that the affected limb was capable of accurately tracking the continuous movement of the healthy limb. This synchronization and coordination facilitated efficient upper limb rehabilitation.
Author Zhang, Jing
Pei, Zhongcai
Zhang, Yue
Shen, Cheng
Li, Zhongyi
Chen, Weihai
Author_xml – sequence: 1
  givenname: Cheng
  surname: Shen
  fullname: Shen, Cheng
  email: cshen0322@outlook.com
  organization: Shenyang Aerospace University,Department of Artificial Intelligence,Shenyang,Liaoning Province,China,110136
– sequence: 2
  givenname: Zhongcai
  surname: Pei
  fullname: Pei, Zhongcai
  email: peizc@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,100191
– sequence: 3
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  email: zhangjing@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,100191
– sequence: 4
  givenname: Zhongyi
  surname: Li
  fullname: Li, Zhongyi
  email: 1225234532@qq.com
  organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,100191
– sequence: 5
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  email: zhangyue1226@126.com
  organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,100191
– sequence: 6
  givenname: Weihai
  surname: Chen
  fullname: Chen, Weihai
  email: whchenbuaa@126.com
  organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,100191
BookMark eNo1kEtPAjEUhavRRET-gYv-gcHblva27gBRSUhMfG3JHeYWa-ZhZsYQ_r3iY3W-s_jO4pyLk7qpWQipYKwUhKvlfLmYOmUxjDXoyViBc1YZfyRGAYM3FowD7_yxGGhlfaZ1wDMx6rp3ADAK0Rs1EOtpLRdl3uzkLJXUc0ulfOQ3ylOZeupTU8unfddzJWfUcSEP_bONtOFvjTd921T7ZttSdS1vuEvbWlJdyFcqU_FjX4jTSGXHo78cipfbxfP8Pls93C3n01WWFLo-c8Z67_NcK4oFhhwIQsh1ARQQ0boYzGaClthHbQ_oDMZCkY9gCDGaobj83U3MvP5oU0Xtfv3_ifkCmOZYSQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIEA61579.2024.10665138
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350360868
EISSN 2158-2297
EndPage 6
ExternalDocumentID 10665138
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development Program of Zhejiang Province
  grantid: 2024C03042,2021C03050
  funderid: 10.13039/501100013145
– fundername: National Natural Science Foundation
  grantid: 62333023,52305004
  funderid: 10.13039/100014717
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LQ24E050008
  funderid: 10.13039/501100004731
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M740193
  funderid: 10.13039/501100002858
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-635888bb21afd79b0a099b2d0a977756f93c475ae8f253c47637fd1a8f03a77f3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-635888bb21afd79b0a099b2d0a977756f93c475ae8f253c47637fd1a8f03a77f3
PageCount 6
ParticipantIDs ieee_primary_10665138
PublicationCentury 2000
PublicationDate 2024-Aug.-5
PublicationDateYYYYMMDD 2024-08-05
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-5
  day: 05
PublicationDecade 2020
PublicationTitle IEEE Conference on Industrial Electronics and Applications (Online)
PublicationTitleAbbrev ICIEA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177831
Score 1.8811837
Snippet Recent years have witnessed the promising future of surface electromyography (sEMG)-based motion intention recognition technology in the intelligent control of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms bilateral rehabilitation
Biomedical signal
Exoskeletons
Hardware
Industrial electronics
joint angle
Neural networks
regression
surface electromyography
Synchronization
Tracking
Title An Elbow Bilateral Rehabilitation System Based on Surface Electromyogram: Design and Validation
URI https://ieeexplore.ieee.org/document/10665138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uT_ri18Rv8uBra9s0SevbNiebD0PEyd5GPmE4Oxkror_em3SdThB8SwOBcEM59ybnnIvQVUqsEsrQIFKEBmnG0gBALwqUyQWVNk6s9myLIeuP0vsxHa_E6l4LY4zx5DMTuqF_y9dzVbqrMvjDGaMxyRqoAZVbJdZaX6gAEPKMxDVbJ8qvB91Brw2IzZ0gJUnDevlGIxWPI3e7aFjvoKKPvITlUobq85c547-3uIda35I9_LAGo320ZYoDtPPDbfAQTdoF7s3k_B13pjPhlMcz_Lhh1I0r_3LcAWjT2H2XCwsxhmW-Wc7rhydz3eBbz_vAotD4GRL5qi9TC43uek_dfrDqrxBMY86WAeQaUP9KmcTCap7LSEC6KBMdCUgKOWU2JyrlVJjMJtQNGeFWxyKzERGcW3KEmsW8MMcI5xnXynJKmRYpISJnwrVmTwyUI3lmyQlquVhN3ioLjUkdptM_5s_Qtjsyz7Sj56i5XJTmAtB_KS_9qX8B5bquLw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA06D-rFr4nf5uC1tW2apPW2zY1N5xDZZLeSNAkMZyejRfSvN0nX6QTBW1poCb-2vJf0vfcD4CpEKmWpxI6XIuyEEQkdDXqek8qYYa78QAmrthiQ7ii8G-PxwqxuvTBSSis-k64Z2n_5YpYWZqtMf-GEYB9F62BDAz_2S7vWcktFQyGNkF_pdbz4utfqtRsas6mxpAShW91gpZWKRZLODhhUcygFJC9ukXM3_fwVz_jvSe6C-rdpDz4u4WgPrMlsH2z_yBs8AEkjg-0pn73D5mTKjPd4Cp9WorphmWAOmxrcBDTHxVzpKuvLbLuc1w8r57qBt1b5AVkm4LOm8mVnpjoYddrDVtdZdFhwJj4luaPZhl4Bcx74TAkac49pwsgD4TFNCykmKkZpSDGTkQqwGRJElfBZpDzEKFXoENSyWSaPAIwjKlJFMSaChQixmDDTnD2QekESRwodg7qpVfJWhmgkVZlO_jh_CTa7w4d-0u8N7k_Blnl8VneHz0AtnxfyXHOBnF_YN-ALLJKxeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Conference+on+Industrial+Electronics+and+Applications+%28Online%29&rft.atitle=An+Elbow+Bilateral+Rehabilitation+System+Based+on+Surface+Electromyogram%3A+Design+and+Validation&rft.au=Shen%2C+Cheng&rft.au=Pei%2C+Zhongcai&rft.au=Zhang%2C+Jing&rft.au=Li%2C+Zhongyi&rft.date=2024-08-05&rft.pub=IEEE&rft.eissn=2158-2297&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICIEA61579.2024.10665138&rft.externalDocID=10665138