An Elbow Bilateral Rehabilitation System Based on Surface Electromyogram: Design and Validation
Recent years have witnessed the promising future of surface electromyography (sEMG)-based motion intention recognition technology in the intelligent control of rehabilitation exoskeletons. In this paper, we propose an elbow bilateral rehabilitation system (EBRS) based on sEMG, which achieves continu...
Saved in:
Published in | IEEE Conference on Industrial Electronics and Applications (Online) pp. 1 - 6 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
05.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent years have witnessed the promising future of surface electromyography (sEMG)-based motion intention recognition technology in the intelligent control of rehabilitation exoskeletons. In this paper, we propose an elbow bilateral rehabilitation system (EBRS) based on sEMG, which achieves continuous tracking of the healthy limb movement intention by the affected limb. We develop the hardware and control system for the EBRS. Additionally, we explore various combinations of nine sEMG features with three regression algorithms to identify the optimal combination for estimating elbow joint angles. Experimental results with subjects showed that utilizing the Generalized Regression Neural Network (GRNN) in combination with Root Mean Square (RMS) and Waveform Length (WL) features yielded the second-bast regression performance (RMSE: 0.903; R2: 0.999). Furthermore, experiments conducted with the EBRS revealed that the affected limb was capable of accurately tracking the continuous movement of the healthy limb. This synchronization and coordination facilitated efficient upper limb rehabilitation. |
---|---|
AbstractList | Recent years have witnessed the promising future of surface electromyography (sEMG)-based motion intention recognition technology in the intelligent control of rehabilitation exoskeletons. In this paper, we propose an elbow bilateral rehabilitation system (EBRS) based on sEMG, which achieves continuous tracking of the healthy limb movement intention by the affected limb. We develop the hardware and control system for the EBRS. Additionally, we explore various combinations of nine sEMG features with three regression algorithms to identify the optimal combination for estimating elbow joint angles. Experimental results with subjects showed that utilizing the Generalized Regression Neural Network (GRNN) in combination with Root Mean Square (RMS) and Waveform Length (WL) features yielded the second-bast regression performance (RMSE: 0.903; R2: 0.999). Furthermore, experiments conducted with the EBRS revealed that the affected limb was capable of accurately tracking the continuous movement of the healthy limb. This synchronization and coordination facilitated efficient upper limb rehabilitation. |
Author | Zhang, Jing Pei, Zhongcai Zhang, Yue Shen, Cheng Li, Zhongyi Chen, Weihai |
Author_xml | – sequence: 1 givenname: Cheng surname: Shen fullname: Shen, Cheng email: cshen0322@outlook.com organization: Shenyang Aerospace University,Department of Artificial Intelligence,Shenyang,Liaoning Province,China,110136 – sequence: 2 givenname: Zhongcai surname: Pei fullname: Pei, Zhongcai email: peizc@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,100191 – sequence: 3 givenname: Jing surname: Zhang fullname: Zhang, Jing email: zhangjing@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,100191 – sequence: 4 givenname: Zhongyi surname: Li fullname: Li, Zhongyi email: 1225234532@qq.com organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,100191 – sequence: 5 givenname: Yue surname: Zhang fullname: Zhang, Yue email: zhangyue1226@126.com organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,100191 – sequence: 6 givenname: Weihai surname: Chen fullname: Chen, Weihai email: whchenbuaa@126.com organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,100191 |
BookMark | eNo1kEtPAjEUhavRRET-gYv-gcHblva27gBRSUhMfG3JHeYWa-ZhZsYQ_r3iY3W-s_jO4pyLk7qpWQipYKwUhKvlfLmYOmUxjDXoyViBc1YZfyRGAYM3FowD7_yxGGhlfaZ1wDMx6rp3ADAK0Rs1EOtpLRdl3uzkLJXUc0ulfOQ3ylOZeupTU8unfddzJWfUcSEP_bONtOFvjTd921T7ZttSdS1vuEvbWlJdyFcqU_FjX4jTSGXHo78cipfbxfP8Pls93C3n01WWFLo-c8Z67_NcK4oFhhwIQsh1ARQQ0boYzGaClthHbQ_oDMZCkY9gCDGaobj83U3MvP5oU0Xtfv3_ifkCmOZYSQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICIEA61579.2024.10665138 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350360868 |
EISSN | 2158-2297 |
EndPage | 6 |
ExternalDocumentID | 10665138 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key Research and Development Program of Zhejiang Province grantid: 2024C03042,2021C03050 funderid: 10.13039/501100013145 – fundername: National Natural Science Foundation grantid: 62333023,52305004 funderid: 10.13039/100014717 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQ24E050008 funderid: 10.13039/501100004731 – fundername: China Postdoctoral Science Foundation grantid: 2023M740193 funderid: 10.13039/501100002858 |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i176t-635888bb21afd79b0a099b2d0a977756f93c475ae8f253c47637fd1a8f03a77f3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:00:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-635888bb21afd79b0a099b2d0a977756f93c475ae8f253c47637fd1a8f03a77f3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10665138 |
PublicationCentury | 2000 |
PublicationDate | 2024-Aug.-5 |
PublicationDateYYYYMMDD | 2024-08-05 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug.-5 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | IEEE Conference on Industrial Electronics and Applications (Online) |
PublicationTitleAbbrev | ICIEA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003177831 |
Score | 1.8811837 |
Snippet | Recent years have witnessed the promising future of surface electromyography (sEMG)-based motion intention recognition technology in the intelligent control of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | bilateral rehabilitation Biomedical signal Exoskeletons Hardware Industrial electronics joint angle Neural networks regression surface electromyography Synchronization Tracking |
Title | An Elbow Bilateral Rehabilitation System Based on Surface Electromyogram: Design and Validation |
URI | https://ieeexplore.ieee.org/document/10665138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uT_ri18Rv8uBra9s0SevbNiebD0PEyd5GPmE4Oxkror_em3SdThB8SwOBcEM59ybnnIvQVUqsEsrQIFKEBmnG0gBALwqUyQWVNk6s9myLIeuP0vsxHa_E6l4LY4zx5DMTuqF_y9dzVbqrMvjDGaMxyRqoAZVbJdZaX6gAEPKMxDVbJ8qvB91Brw2IzZ0gJUnDevlGIxWPI3e7aFjvoKKPvITlUobq85c547-3uIda35I9_LAGo320ZYoDtPPDbfAQTdoF7s3k_B13pjPhlMcz_Lhh1I0r_3LcAWjT2H2XCwsxhmW-Wc7rhydz3eBbz_vAotD4GRL5qi9TC43uek_dfrDqrxBMY86WAeQaUP9KmcTCap7LSEC6KBMdCUgKOWU2JyrlVJjMJtQNGeFWxyKzERGcW3KEmsW8MMcI5xnXynJKmRYpISJnwrVmTwyUI3lmyQlquVhN3ioLjUkdptM_5s_Qtjsyz7Sj56i5XJTmAtB_KS_9qX8B5bquLw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA06D-rFr4nf5uC1tW2apPW2zY1N5xDZZLeSNAkMZyejRfSvN0nX6QTBW1poCb-2vJf0vfcD4CpEKmWpxI6XIuyEEQkdDXqek8qYYa78QAmrthiQ7ii8G-PxwqxuvTBSSis-k64Z2n_5YpYWZqtMf-GEYB9F62BDAz_2S7vWcktFQyGNkF_pdbz4utfqtRsas6mxpAShW91gpZWKRZLODhhUcygFJC9ukXM3_fwVz_jvSe6C-rdpDz4u4WgPrMlsH2z_yBs8AEkjg-0pn73D5mTKjPd4Cp9WorphmWAOmxrcBDTHxVzpKuvLbLuc1w8r57qBt1b5AVkm4LOm8mVnpjoYddrDVtdZdFhwJj4luaPZhl4Bcx74TAkac49pwsgD4TFNCykmKkZpSDGTkQqwGRJElfBZpDzEKFXoENSyWSaPAIwjKlJFMSaChQixmDDTnD2QekESRwodg7qpVfJWhmgkVZlO_jh_CTa7w4d-0u8N7k_Blnl8VneHz0AtnxfyXHOBnF_YN-ALLJKxeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Conference+on+Industrial+Electronics+and+Applications+%28Online%29&rft.atitle=An+Elbow+Bilateral+Rehabilitation+System+Based+on+Surface+Electromyogram%3A+Design+and+Validation&rft.au=Shen%2C+Cheng&rft.au=Pei%2C+Zhongcai&rft.au=Zhang%2C+Jing&rft.au=Li%2C+Zhongyi&rft.date=2024-08-05&rft.pub=IEEE&rft.eissn=2158-2297&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICIEA61579.2024.10665138&rft.externalDocID=10665138 |