TELLM: Advancements in Knowledge Incorporation and Task-specific Enhancements of Large Language Models

Customer service is crucial for any business to maintain good customer relationships and growth. However, addressing a wide variety of customer inquiries often requires deep domain expertise that may not be readily available. This paper presents TELLM, a customer service AI agent leveraging large la...

Full description

Saved in:
Bibliographic Details
Published inIranian Conference on Electrical Engineering pp. 1 - 5
Main Authors Feizi, Fatemeh, HosseinNia, Amirhossein, Hemmatyar, MohammadMahdi, Rahimi, Fatemeh, Kaleibar, Farhoud Jafari
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.05.2024
Subjects
Online AccessGet full text
ISSN2642-9527
DOI10.1109/ICEE63041.2024.10667786

Cover

Abstract Customer service is crucial for any business to maintain good customer relationships and growth. However, addressing a wide variety of customer inquiries often requires deep domain expertise that may not be readily available. This paper presents TELLM, a customer service AI agent leveraging large language models to provide technical support for telecom companies. TELLM is trained using a knowledge base containing categorized technical solutions through dual-phase fine-tuning. It is further refined through reinforcement learning with feedback from subject matter experts. Evaluation on a real-world customer service dataset demonstrates TELLM outperforms prior approaches on automatic metrics and achieves high scores in human evaluation for response accuracy, clarity and effectiveness.
AbstractList Customer service is crucial for any business to maintain good customer relationships and growth. However, addressing a wide variety of customer inquiries often requires deep domain expertise that may not be readily available. This paper presents TELLM, a customer service AI agent leveraging large language models to provide technical support for telecom companies. TELLM is trained using a knowledge base containing categorized technical solutions through dual-phase fine-tuning. It is further refined through reinforcement learning with feedback from subject matter experts. Evaluation on a real-world customer service dataset demonstrates TELLM outperforms prior approaches on automatic metrics and achieves high scores in human evaluation for response accuracy, clarity and effectiveness.
Author Rahimi, Fatemeh
Kaleibar, Farhoud Jafari
Feizi, Fatemeh
Hemmatyar, MohammadMahdi
HosseinNia, Amirhossein
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Feizi
  fullname: Feizi, Fatemeh
  email: feizi.fateme1997@gmail.com
  organization: Artificial Intelligence Laboratory, Irancell Labs,Tehran,Iran
– sequence: 2
  givenname: Amirhossein
  surname: HosseinNia
  fullname: HosseinNia, Amirhossein
  email: amirhossein.hoss@mtnirancell.ir
  organization: Artificial Intelligence Laboratory, Irancell Labs,Tehran,Iran
– sequence: 3
  givenname: MohammadMahdi
  surname: Hemmatyar
  fullname: Hemmatyar, MohammadMahdi
  email: mohammadmahdi.h@mtnirancell.ir
  organization: Artificial Intelligence Laboratory, Irancell Labs,Tehran,Iran
– sequence: 4
  givenname: Fatemeh
  surname: Rahimi
  fullname: Rahimi, Fatemeh
  email: fatemeh.rahimi2@mtnirancell.ir
  organization: Artificial Intelligence Laboratory, Irancell Labs,Tehran,Iran
– sequence: 5
  givenname: Farhoud Jafari
  surname: Kaleibar
  fullname: Kaleibar, Farhoud Jafari
  email: farhoud.j@mtnirancell.ir
  organization: Artificial Intelligence Laboratory, Irancell Labs,Tehran,Iran
BookMark eNpFkMtKAzEYhaMoWGvfQDAvMDW3ycVdKVMtTnFT1yWT_KnRNimTUfHtLai4OmfzfXDOJTpLOQFCN5RMKSXmdjlvGsmJoFNGmJhSIqVSWp6giVFG85pwJbkgp2jEpGCVqZm6QJNSXgkhnGqtTT1CYd207eoOz_yHTQ72kIaCY8KPKX_uwG8BL5PL_SH3dog5YZs8XtvyVpUDuBiiw016-SdzwK3tj1Rr0_bdHssqe9iVK3Qe7K7A5DfH6HnRrOcPVft0v5zP2ipSJYeqDoIKa6wmLtSSia7z3jDdOeq8kjUR3oWOd5qDcsdRQgkOEBh45gn10vExuv7xRgDYHPq4t_3X5u8a_g0VUVtP
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICEE63041.2024.10667786
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350376340
EISSN 2642-9527
EndPage 5
ExternalDocumentID 10667786
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-5f414a9a80cf5624bbdd928bc1cd76504dcfb3b83e7c2644743eef2ed2d01d6c3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:59:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-5f414a9a80cf5624bbdd928bc1cd76504dcfb3b83e7c2644743eef2ed2d01d6c3
PageCount 5
ParticipantIDs ieee_primary_10667786
PublicationCentury 2000
PublicationDate 2024-May-14
PublicationDateYYYYMMDD 2024-05-14
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-14
  day: 14
PublicationDecade 2020
PublicationTitle Iranian Conference on Electrical Engineering
PublicationTitleAbbrev ICEE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188895
Score 1.8718911
Snippet Customer service is crucial for any business to maintain good customer relationships and growth. However, addressing a wide variety of customer inquiries often...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Customer services
Deep Learning
Knowledge based systems
Large language models
Measurement
Mission critical systems
Question-answering
Reinforcement learning
Subject matter experts
Telecom
Title TELLM: Advancements in Knowledge Incorporation and Task-specific Enhancements of Large Language Models
URI https://ieeexplore.ieee.org/document/10667786
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ734NfGbHLy2Nmmapt5kdDjdhocNdhv5xDHphusu_vUmabupIHgJIRAIyQv55b3f7z0A7hLNo9QIFiQi4QFBPA4sCrEXz-lAWSoo966B4Yg-TcjzNJnWYnWvhdFae_KZDl3Xx_LVUm6cq8zecOrznbVAy9pZJdbaOlSscTKWJTWHC0XZfb-b59R-1903EJOwmf2jjop_RnqHYNQsoGKPLMJNKUL5-Ss3479XeAQ6O8UefN2-RcdgTxcn4OBbssFTYMb5YDB8gI9V1N9L2-C8gC-NVw32XU7LVW0TkBcKjvl6ETgxpiMUwbx4281cGjhwLHLbVh5P6Mqqva87YNLLx92noK6yEMxRSssgMQQRnnEWSWPBEBFCqQwzIZFUqcVvREkjYsFinUqHnizk0NpgrbCKkKIyPgPtYlnocwBjTo2Fc5hIZIjAEafY2oEUEY80wpJdgI7bstmqSqQxa3br8o_xK7DvTs4F6xG5Bu3yY6NvLAYoxa0_-y-aWbEi
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D-rFr4nf5uC1tWnTNvUmo2Nz3fDQwW4jnzgm3XDdxb_eJG03FQQvoQQCIX3h_fLe7_ceAA-hpF6sGHFCFlIHIxo4GoXoi2d0oCRmEbWhgeEo6o3xyySc1GJ1q4WRUlrymXTNp83liwVfm1CZvuGRrXe2C_a048dhJdfahFS0eRKShDWLC3nJY7-TppF-sJuHoI_dZv2PTirWkXSPwKjZQsUfmbvrkrn881d1xn_v8Ri0t5o9-LrxRidgRxan4PBbucEzoPI0y4ZP8LnK-1txG5wVcNDE1WDfVLVc1lYBaSFgTldzx8gxDaUIpsXbduVCwczwyPVYxTyhaaz2vmqDcTfNOz2n7rPgzFAclU6oMMI0ocTjSsMhzJgQiU8YR1zEGsFhwRULGAlkzA1-0qBDSuVL4QsPiYgH56BVLAp5AWBAI6UBnY85Upj5Ho18bQmcedSTyOfkErTNkU2XVSmNaXNaV3_M34P9Xj7Mpll_NLgGB-YvmtQ9wjegVX6s5a1GBCW7s3bwBQ3AtG8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Iranian+Conference+on+Electrical+Engineering&rft.atitle=TELLM%3A+Advancements+in+Knowledge+Incorporation+and+Task-specific+Enhancements+of+Large+Language+Models&rft.au=Feizi%2C+Fatemeh&rft.au=HosseinNia%2C+Amirhossein&rft.au=Hemmatyar%2C+MohammadMahdi&rft.au=Rahimi%2C+Fatemeh&rft.date=2024-05-14&rft.pub=IEEE&rft.eissn=2642-9527&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICEE63041.2024.10667786&rft.externalDocID=10667786