TELLM: Advancements in Knowledge Incorporation and Task-specific Enhancements of Large Language Models
Customer service is crucial for any business to maintain good customer relationships and growth. However, addressing a wide variety of customer inquiries often requires deep domain expertise that may not be readily available. This paper presents TELLM, a customer service AI agent leveraging large la...
Saved in:
Published in | Iranian Conference on Electrical Engineering pp. 1 - 5 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2642-9527 |
DOI | 10.1109/ICEE63041.2024.10667786 |
Cover
Abstract | Customer service is crucial for any business to maintain good customer relationships and growth. However, addressing a wide variety of customer inquiries often requires deep domain expertise that may not be readily available. This paper presents TELLM, a customer service AI agent leveraging large language models to provide technical support for telecom companies. TELLM is trained using a knowledge base containing categorized technical solutions through dual-phase fine-tuning. It is further refined through reinforcement learning with feedback from subject matter experts. Evaluation on a real-world customer service dataset demonstrates TELLM outperforms prior approaches on automatic metrics and achieves high scores in human evaluation for response accuracy, clarity and effectiveness. |
---|---|
AbstractList | Customer service is crucial for any business to maintain good customer relationships and growth. However, addressing a wide variety of customer inquiries often requires deep domain expertise that may not be readily available. This paper presents TELLM, a customer service AI agent leveraging large language models to provide technical support for telecom companies. TELLM is trained using a knowledge base containing categorized technical solutions through dual-phase fine-tuning. It is further refined through reinforcement learning with feedback from subject matter experts. Evaluation on a real-world customer service dataset demonstrates TELLM outperforms prior approaches on automatic metrics and achieves high scores in human evaluation for response accuracy, clarity and effectiveness. |
Author | Rahimi, Fatemeh Kaleibar, Farhoud Jafari Feizi, Fatemeh Hemmatyar, MohammadMahdi HosseinNia, Amirhossein |
Author_xml | – sequence: 1 givenname: Fatemeh surname: Feizi fullname: Feizi, Fatemeh email: feizi.fateme1997@gmail.com organization: Artificial Intelligence Laboratory, Irancell Labs,Tehran,Iran – sequence: 2 givenname: Amirhossein surname: HosseinNia fullname: HosseinNia, Amirhossein email: amirhossein.hoss@mtnirancell.ir organization: Artificial Intelligence Laboratory, Irancell Labs,Tehran,Iran – sequence: 3 givenname: MohammadMahdi surname: Hemmatyar fullname: Hemmatyar, MohammadMahdi email: mohammadmahdi.h@mtnirancell.ir organization: Artificial Intelligence Laboratory, Irancell Labs,Tehran,Iran – sequence: 4 givenname: Fatemeh surname: Rahimi fullname: Rahimi, Fatemeh email: fatemeh.rahimi2@mtnirancell.ir organization: Artificial Intelligence Laboratory, Irancell Labs,Tehran,Iran – sequence: 5 givenname: Farhoud Jafari surname: Kaleibar fullname: Kaleibar, Farhoud Jafari email: farhoud.j@mtnirancell.ir organization: Artificial Intelligence Laboratory, Irancell Labs,Tehran,Iran |
BookMark | eNpFkMtKAzEYhaMoWGvfQDAvMDW3ycVdKVMtTnFT1yWT_KnRNimTUfHtLai4OmfzfXDOJTpLOQFCN5RMKSXmdjlvGsmJoFNGmJhSIqVSWp6giVFG85pwJbkgp2jEpGCVqZm6QJNSXgkhnGqtTT1CYd207eoOz_yHTQ72kIaCY8KPKX_uwG8BL5PL_SH3dog5YZs8XtvyVpUDuBiiw016-SdzwK3tj1Rr0_bdHssqe9iVK3Qe7K7A5DfH6HnRrOcPVft0v5zP2ipSJYeqDoIKa6wmLtSSia7z3jDdOeq8kjUR3oWOd5qDcsdRQgkOEBh45gn10vExuv7xRgDYHPq4t_3X5u8a_g0VUVtP |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICEE63041.2024.10667786 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350376340 |
EISSN | 2642-9527 |
EndPage | 5 |
ExternalDocumentID | 10667786 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i176t-5f414a9a80cf5624bbdd928bc1cd76504dcfb3b83e7c2644743eef2ed2d01d6c3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:59:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-5f414a9a80cf5624bbdd928bc1cd76504dcfb3b83e7c2644743eef2ed2d01d6c3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10667786 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-14 |
PublicationDateYYYYMMDD | 2024-05-14 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Iranian Conference on Electrical Engineering |
PublicationTitleAbbrev | ICEE |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003188895 |
Score | 1.8718911 |
Snippet | Customer service is crucial for any business to maintain good customer relationships and growth. However, addressing a wide variety of customer inquiries often... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Customer services Deep Learning Knowledge based systems Large language models Measurement Mission critical systems Question-answering Reinforcement learning Subject matter experts Telecom |
Title | TELLM: Advancements in Knowledge Incorporation and Task-specific Enhancements of Large Language Models |
URI | https://ieeexplore.ieee.org/document/10667786 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ734NfGbHLy2Nmmapt5kdDjdhocNdhv5xDHphusu_vUmabupIHgJIRAIyQv55b3f7z0A7hLNo9QIFiQi4QFBPA4sCrEXz-lAWSoo966B4Yg-TcjzNJnWYnWvhdFae_KZDl3Xx_LVUm6cq8zecOrznbVAy9pZJdbaOlSscTKWJTWHC0XZfb-b59R-1903EJOwmf2jjop_RnqHYNQsoGKPLMJNKUL5-Ss3479XeAQ6O8UefN2-RcdgTxcn4OBbssFTYMb5YDB8gI9V1N9L2-C8gC-NVw32XU7LVW0TkBcKjvl6ETgxpiMUwbx4281cGjhwLHLbVh5P6Mqqva87YNLLx92noK6yEMxRSssgMQQRnnEWSWPBEBFCqQwzIZFUqcVvREkjYsFinUqHnizk0NpgrbCKkKIyPgPtYlnocwBjTo2Fc5hIZIjAEafY2oEUEY80wpJdgI7bstmqSqQxa3br8o_xK7DvTs4F6xG5Bu3yY6NvLAYoxa0_-y-aWbEi |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D-rFr4nf5uC1tWnTNvUmo2Nz3fDQwW4jnzgm3XDdxb_eJG03FQQvoQQCIX3h_fLe7_ceAA-hpF6sGHFCFlIHIxo4GoXoi2d0oCRmEbWhgeEo6o3xyySc1GJ1q4WRUlrymXTNp83liwVfm1CZvuGRrXe2C_a048dhJdfahFS0eRKShDWLC3nJY7-TppF-sJuHoI_dZv2PTirWkXSPwKjZQsUfmbvrkrn881d1xn_v8Ri0t5o9-LrxRidgRxan4PBbucEzoPI0y4ZP8LnK-1txG5wVcNDE1WDfVLVc1lYBaSFgTldzx8gxDaUIpsXbduVCwczwyPVYxTyhaaz2vmqDcTfNOz2n7rPgzFAclU6oMMI0ocTjSsMhzJgQiU8YR1zEGsFhwRULGAlkzA1-0qBDSuVL4QsPiYgH56BVLAp5AWBAI6UBnY85Upj5Ho18bQmcedSTyOfkErTNkU2XVSmNaXNaV3_M34P9Xj7Mpll_NLgGB-YvmtQ9wjegVX6s5a1GBCW7s3bwBQ3AtG8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Iranian+Conference+on+Electrical+Engineering&rft.atitle=TELLM%3A+Advancements+in+Knowledge+Incorporation+and+Task-specific+Enhancements+of+Large+Language+Models&rft.au=Feizi%2C+Fatemeh&rft.au=HosseinNia%2C+Amirhossein&rft.au=Hemmatyar%2C+MohammadMahdi&rft.au=Rahimi%2C+Fatemeh&rft.date=2024-05-14&rft.pub=IEEE&rft.eissn=2642-9527&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICEE63041.2024.10667786&rft.externalDocID=10667786 |