Mip-Splatting: Alias-Free 3D Gaussian Splatting

Recently, 3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency. However, strong artifacts can be observed when changing the sampling rate, e.g., by changing focal length or camera distance. We find that the source for this phenomenon c...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 19447 - 19456
Main Authors Yu, Zehao, Chen, Anpei, Huang, Binbin, Sattler, Torsten, Geiger, Andreas
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.06.2024
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR52733.2024.01839

Cover

Loading…
Abstract Recently, 3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency. However, strong artifacts can be observed when changing the sampling rate, e.g., by changing focal length or camera distance. We find that the source for this phenomenon can be attributed to the lack of 3D frequency constraints and the usage of a 2D dilation filter. To address this problem, we introduce a 3D smoothing filter to constrains the size of the 3D Gaussian primitives based on the maximal sampling frequency induced by the input views. It eliminates high-frequency artifacts when zooming in. Moreover, replacing 2D dilation with a 2D Mip filter, which simulates a 2D box filter, effectively mitigates aliasing and dilation issues. Our evaluation, including scenarios such a training on single-scale images and testing on multiple scales, validates the effectiveness of our approach.
AbstractList Recently, 3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency. However, strong artifacts can be observed when changing the sampling rate, e.g., by changing focal length or camera distance. We find that the source for this phenomenon can be attributed to the lack of 3D frequency constraints and the usage of a 2D dilation filter. To address this problem, we introduce a 3D smoothing filter to constrains the size of the 3D Gaussian primitives based on the maximal sampling frequency induced by the input views. It eliminates high-frequency artifacts when zooming in. Moreover, replacing 2D dilation with a 2D Mip filter, which simulates a 2D box filter, effectively mitigates aliasing and dilation issues. Our evaluation, including scenarios such a training on single-scale images and testing on multiple scales, validates the effectiveness of our approach.
Author Chen, Anpei
Sattler, Torsten
Geiger, Andreas
Yu, Zehao
Huang, Binbin
Author_xml – sequence: 1
  givenname: Zehao
  surname: Yu
  fullname: Yu, Zehao
  organization: University of Tübingen
– sequence: 2
  givenname: Anpei
  surname: Chen
  fullname: Chen, Anpei
  organization: University of Tübingen
– sequence: 3
  givenname: Binbin
  surname: Huang
  fullname: Huang, Binbin
  organization: ShanghaiTech University
– sequence: 4
  givenname: Torsten
  surname: Sattler
  fullname: Sattler, Torsten
  organization: Czech Technical University in Prague
– sequence: 5
  givenname: Andreas
  surname: Geiger
  fullname: Geiger, Andreas
  organization: University of Tübingen
BookMark eNo9j8tOwzAQRQ0CiVLyB13kB5zannjiYVcFWpCKQLy2lRNPkVEIURwW_D2VQKzu5ujo3HNx0n_2LMRCq0JrRcv69eHRmgqgMMqUhdIO6EhkVJEDq8CCUngsZlohSCRNZyJL6V0pBUZrJDcTy7s4yKeh89MU-7fLfNVFn-R6ZM7hKt_4r5Si7_N_4kKc7n2XOPvbuXhZXz_XN3J7v7mtV1sZdYWTtE2JRN7rkpEphEajs4GcDxhaQ-2eA5TKmUMDGvaVa9vSVEjM0GBjCeZi8euNzLwbxvjhx-_d4YhFqhB-ABd0RcU
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52733.2024.01839
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350353006
EISSN 1063-6919
EndPage 19456
ExternalDocumentID 10656976
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i176t-5b4699aa14e6e9ddb1685d98ad6dc29cfed3408269862ea78cc42769ee3b6b593
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-5b4699aa14e6e9ddb1685d98ad6dc29cfed3408269862ea78cc42769ee3b6b593
PageCount 10
ParticipantIDs ieee_primary_10656976
PublicationCentury 2000
PublicationDate 2024-June-16
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.6728928
Snippet Recently, 3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency. However, strong artifacts can...
SourceID ieee
SourceType Publisher
StartPage 19447
SubjectTerms 3D Reconstruction; Gaussian Splatting; Novel View Synthesis; Anti-aliasing; Real-time Rendering
Cameras
Computer vision
Matched filters
Rendering (computer graphics)
Smoothing methods
Three-dimensional displays
Training
Title Mip-Splatting: Alias-Free 3D Gaussian Splatting
URI https://ieeexplore.ieee.org/document/10656976
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J0_1UfHNHrxmu3nuxptUaxFailrpreQxC0VpS7t78debbLcVBcFbCIFMJoSZbzLfDEI3oaZXrmmOwTmDubApNpBrzGlOwq-Y0zaQkwdD2R_zp4mY1GT1igsDAFXyGcRhWP3lu4UtQ6jMv3DvfXj72UANj9w2ZK1dQIV5KCNVVtPjSKI63bfRc5CFeRhIeZwEZ-BHE5XKhvRaaLjdfZM68h6XhYnt56_CjP8W7wC1v-l60WhniA7RHsyPUKv2L6P69a6PUWcwW-KX5Yeucp1vo7uPmV7j3gogYvfRoy7XgVEZ7Va00bj38Nrt47phAp6RVBZYGA92ldaEgwTllU9kJpzKtJPOUmVzcCw0mPZqkhR0mlnLaSoVADPSCMVOUHO-mMMpinjmDLMe3GWWc2oSBc4DN5HkLnFEOH2G2kEB0-WmJsZ0e_bzP-Yv0H64hJBkReQlaharEq68OS_MdXWNX6ZAnqI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3rCB8a3PXjtso-2u_VmUEQFQhQMN9LHbEIkQGD34q-3XRaMJibemqZJp9M0M990vhmEblxNr1SGKQFjFKFMx0RBKgkN08D9ihmpHTm50-WtAX0esmFJVi-4MABQJJ-B54bFX76Z6dyFyuwLt96HtZ_baIc5Nu6KrrUJqUQWzHCRlAS5wBf1xnvv1UkTWSAYUs937sCPNiqFFWlWUXe9_yp55MPLM-Xpz1-lGf8t4D6qfRP2cG9jig7QFkwPUbX0MHH5fpdHqN4Zz8nbfCKLbOdbfDcZyyVpLgBwdI8fZb50nEq8WVFDg-ZDv9EiZcsEMg5inhGmLNwVUgYUOAir_oAnzIhEGm50KHQKJnItpq2aeAgyTrSmYcwFQKS4YiI6RpXpbAonCNPEqEhbeJdoSkPlCzAWujE_Nb4JmJGnqOYUMJqvqmKM1mc_-2P-Gu22-p32qP3UfTlHe-5CXMpVwC9QJVvkcGmNe6auiiv9AiCuoeo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Mip-Splatting%3A+Alias-Free+3D+Gaussian+Splatting&rft.au=Yu%2C+Zehao&rft.au=Chen%2C+Anpei&rft.au=Huang%2C+Binbin&rft.au=Sattler%2C+Torsten&rft.date=2024-06-16&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=19447&rft.epage=19456&rft_id=info:doi/10.1109%2FCVPR52733.2024.01839&rft.externalDocID=10656976