Mip-Splatting: Alias-Free 3D Gaussian Splatting
Recently, 3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency. However, strong artifacts can be observed when changing the sampling rate, e.g., by changing focal length or camera distance. We find that the source for this phenomenon c...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 19447 - 19456 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR52733.2024.01839 |
Cover
Loading…
Abstract | Recently, 3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency. However, strong artifacts can be observed when changing the sampling rate, e.g., by changing focal length or camera distance. We find that the source for this phenomenon can be attributed to the lack of 3D frequency constraints and the usage of a 2D dilation filter. To address this problem, we introduce a 3D smoothing filter to constrains the size of the 3D Gaussian primitives based on the maximal sampling frequency induced by the input views. It eliminates high-frequency artifacts when zooming in. Moreover, replacing 2D dilation with a 2D Mip filter, which simulates a 2D box filter, effectively mitigates aliasing and dilation issues. Our evaluation, including scenarios such a training on single-scale images and testing on multiple scales, validates the effectiveness of our approach. |
---|---|
AbstractList | Recently, 3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency. However, strong artifacts can be observed when changing the sampling rate, e.g., by changing focal length or camera distance. We find that the source for this phenomenon can be attributed to the lack of 3D frequency constraints and the usage of a 2D dilation filter. To address this problem, we introduce a 3D smoothing filter to constrains the size of the 3D Gaussian primitives based on the maximal sampling frequency induced by the input views. It eliminates high-frequency artifacts when zooming in. Moreover, replacing 2D dilation with a 2D Mip filter, which simulates a 2D box filter, effectively mitigates aliasing and dilation issues. Our evaluation, including scenarios such a training on single-scale images and testing on multiple scales, validates the effectiveness of our approach. |
Author | Chen, Anpei Sattler, Torsten Geiger, Andreas Yu, Zehao Huang, Binbin |
Author_xml | – sequence: 1 givenname: Zehao surname: Yu fullname: Yu, Zehao organization: University of Tübingen – sequence: 2 givenname: Anpei surname: Chen fullname: Chen, Anpei organization: University of Tübingen – sequence: 3 givenname: Binbin surname: Huang fullname: Huang, Binbin organization: ShanghaiTech University – sequence: 4 givenname: Torsten surname: Sattler fullname: Sattler, Torsten organization: Czech Technical University in Prague – sequence: 5 givenname: Andreas surname: Geiger fullname: Geiger, Andreas organization: University of Tübingen |
BookMark | eNo9j8tOwzAQRQ0CiVLyB13kB5zannjiYVcFWpCKQLy2lRNPkVEIURwW_D2VQKzu5ujo3HNx0n_2LMRCq0JrRcv69eHRmgqgMMqUhdIO6EhkVJEDq8CCUngsZlohSCRNZyJL6V0pBUZrJDcTy7s4yKeh89MU-7fLfNVFn-R6ZM7hKt_4r5Si7_N_4kKc7n2XOPvbuXhZXz_XN3J7v7mtV1sZdYWTtE2JRN7rkpEphEajs4GcDxhaQ-2eA5TKmUMDGvaVa9vSVEjM0GBjCeZi8euNzLwbxvjhx-_d4YhFqhB-ABd0RcU |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR52733.2024.01839 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9798350353006 |
EISSN | 1063-6919 |
EndPage | 19456 |
ExternalDocumentID | 10656976 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i176t-5b4699aa14e6e9ddb1685d98ad6dc29cfed3408269862ea78cc42769ee3b6b593 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:00:48 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-5b4699aa14e6e9ddb1685d98ad6dc29cfed3408269862ea78cc42769ee3b6b593 |
PageCount | 10 |
ParticipantIDs | ieee_primary_10656976 |
PublicationCentury | 2000 |
PublicationDate | 2024-June-16 |
PublicationDateYYYYMMDD | 2024-06-16 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.6728928 |
Snippet | Recently, 3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency. However, strong artifacts can... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 19447 |
SubjectTerms | 3D Reconstruction; Gaussian Splatting; Novel View Synthesis; Anti-aliasing; Real-time Rendering Cameras Computer vision Matched filters Rendering (computer graphics) Smoothing methods Three-dimensional displays Training |
Title | Mip-Splatting: Alias-Free 3D Gaussian Splatting |
URI | https://ieeexplore.ieee.org/document/10656976 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J0_1UfHNHrxmu3nuxptUaxFailrpreQxC0VpS7t78debbLcVBcFbCIFMJoSZbzLfDEI3oaZXrmmOwTmDubApNpBrzGlOwq-Y0zaQkwdD2R_zp4mY1GT1igsDAFXyGcRhWP3lu4UtQ6jMv3DvfXj72UANj9w2ZK1dQIV5KCNVVtPjSKI63bfRc5CFeRhIeZwEZ-BHE5XKhvRaaLjdfZM68h6XhYnt56_CjP8W7wC1v-l60WhniA7RHsyPUKv2L6P69a6PUWcwW-KX5Yeucp1vo7uPmV7j3gogYvfRoy7XgVEZ7Va00bj38Nrt47phAp6RVBZYGA92ldaEgwTllU9kJpzKtJPOUmVzcCw0mPZqkhR0mlnLaSoVADPSCMVOUHO-mMMpinjmDLMe3GWWc2oSBc4DN5HkLnFEOH2G2kEB0-WmJsZ0e_bzP-Yv0H64hJBkReQlaharEq68OS_MdXWNX6ZAnqI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3rCB8a3PXjtso-2u_VmUEQFQhQMN9LHbEIkQGD34q-3XRaMJibemqZJp9M0M990vhmEblxNr1SGKQFjFKFMx0RBKgkN08D9ihmpHTm50-WtAX0esmFJVi-4MABQJJ-B54bFX76Z6dyFyuwLt96HtZ_baIc5Nu6KrrUJqUQWzHCRlAS5wBf1xnvv1UkTWSAYUs937sCPNiqFFWlWUXe9_yp55MPLM-Xpz1-lGf8t4D6qfRP2cG9jig7QFkwPUbX0MHH5fpdHqN4Zz8nbfCKLbOdbfDcZyyVpLgBwdI8fZb50nEq8WVFDg-ZDv9EiZcsEMg5inhGmLNwVUgYUOAir_oAnzIhEGm50KHQKJnItpq2aeAgyTrSmYcwFQKS4YiI6RpXpbAonCNPEqEhbeJdoSkPlCzAWujE_Nb4JmJGnqOYUMJqvqmKM1mc_-2P-Gu22-p32qP3UfTlHe-5CXMpVwC9QJVvkcGmNe6auiiv9AiCuoeo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Mip-Splatting%3A+Alias-Free+3D+Gaussian+Splatting&rft.au=Yu%2C+Zehao&rft.au=Chen%2C+Anpei&rft.au=Huang%2C+Binbin&rft.au=Sattler%2C+Torsten&rft.date=2024-06-16&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=19447&rft.epage=19456&rft_id=info:doi/10.1109%2FCVPR52733.2024.01839&rft.externalDocID=10656976 |