Correlation-Decoupled Knowledge Distillation for Multimodal Sentiment Analysis with Incomplete Modalities

Multimodal sentiment analysis (MSA) aims to understand human sentiment through multimodal data. Most MSA efforts are based on the assumption of modality completeness. However, in real-world applications, some practical factors cause uncertain modality missingness, which drastically degrades the mode...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 12458 - 12468
Main Authors Li, Mingcheng, Yang, Dingkang, Zhao, Xiao, Wang, Shuaibing, Wang, Yan, Yang, Kun, Sun, Mingyang, Kou, Dongliang, Qian, Ziyun, Zhang, Lihua
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multimodal sentiment analysis (MSA) aims to understand human sentiment through multimodal data. Most MSA efforts are based on the assumption of modality completeness. However, in real-world applications, some practical factors cause uncertain modality missingness, which drastically degrades the model's performance. To this end, we propose a Correlation-decoupled Knowledge Distillation (CorrKD) framework for the MSA task under uncertain missing modalities. Specifically, we present a sample-level contrastive distillation mechanism that transfers comprehensive knowledge containing cross-sample correlations to reconstruct missing semantics. Moreover, a category-guided prototype distillation mechanism is introduced to capture cross-category correlations using category prototypes to align feature distributions and generate favorable joint representations. Eventually, we design a response-disentangled consistency distillation strategy to optimize the sentiment decision boundaries of the student network through response disentanglement and mutual information maximization. Comprehensive experiments on three datasets indicate that our framework can achieve favorable improvements compared with several baselines.
AbstractList Multimodal sentiment analysis (MSA) aims to understand human sentiment through multimodal data. Most MSA efforts are based on the assumption of modality completeness. However, in real-world applications, some practical factors cause uncertain modality missingness, which drastically degrades the model's performance. To this end, we propose a Correlation-decoupled Knowledge Distillation (CorrKD) framework for the MSA task under uncertain missing modalities. Specifically, we present a sample-level contrastive distillation mechanism that transfers comprehensive knowledge containing cross-sample correlations to reconstruct missing semantics. Moreover, a category-guided prototype distillation mechanism is introduced to capture cross-category correlations using category prototypes to align feature distributions and generate favorable joint representations. Eventually, we design a response-disentangled consistency distillation strategy to optimize the sentiment decision boundaries of the student network through response disentanglement and mutual information maximization. Comprehensive experiments on three datasets indicate that our framework can achieve favorable improvements compared with several baselines.
Author Qian, Ziyun
Yang, Dingkang
Li, Mingcheng
Yang, Kun
Zhao, Xiao
Sun, Mingyang
Zhang, Lihua
Wang, Shuaibing
Wang, Yan
Kou, Dongliang
Author_xml – sequence: 1
  givenname: Mingcheng
  surname: Li
  fullname: Li, Mingcheng
  email: mingchengli21@m.fudan.edu.cn
  organization: Academy for Engineering and Technology, Fudan University
– sequence: 2
  givenname: Dingkang
  surname: Yang
  fullname: Yang, Dingkang
  email: dkyang20@fudan.edu.cn
  organization: Academy for Engineering and Technology, Fudan University
– sequence: 3
  givenname: Xiao
  surname: Zhao
  fullname: Zhao, Xiao
  organization: Academy for Engineering and Technology, Fudan University
– sequence: 4
  givenname: Shuaibing
  surname: Wang
  fullname: Wang, Shuaibing
  organization: Academy for Engineering and Technology, Fudan University
– sequence: 5
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Academy for Engineering and Technology, Fudan University
– sequence: 6
  givenname: Kun
  surname: Yang
  fullname: Yang, Kun
  organization: Academy for Engineering and Technology, Fudan University
– sequence: 7
  givenname: Mingyang
  surname: Sun
  fullname: Sun, Mingyang
  organization: Academy for Engineering and Technology, Fudan University
– sequence: 8
  givenname: Dongliang
  surname: Kou
  fullname: Kou, Dongliang
  organization: Academy for Engineering and Technology, Fudan University
– sequence: 9
  givenname: Ziyun
  surname: Qian
  fullname: Qian, Ziyun
  organization: Academy for Engineering and Technology, Fudan University
– sequence: 10
  givenname: Lihua
  surname: Zhang
  fullname: Zhang, Lihua
  organization: Academy for Engineering and Technology, Fudan University
BookMark eNotkMtOAjEYhavRRMR5AxZ9gcHeO12SwQsRovG2JS3zj9aUKZmWEN7eMbg531l8OYtzjS662AFCE0qmlBJzW3--vEqmOZ8ywsSUUFqJM1QYbSouCZecEHWORpQoXipDzRUqUvohhHBGqTLVCPk69j0Em33syjls4n4XoMFPXTwM_AI89yn7cBJwG3u82ofst7GxAb9BN9Qh8Kyz4Zh8wgefv_Gi28TtsJMBr_5Enz2kG3TZ2pCg-OcYfdzfvdeP5fL5YVHPlqWnWuVSOG1AVo02AhrNhLEboUEJZlvBWi1ayixtmXHOOGudcOAarqRklZJaqoqP0eS06wFgvev91vbH9XCBVJxK_gvsol0K
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52733.2024.01184
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350353006
EISSN 1063-6919
EndPage 12468
ExternalDocumentID 10656315
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2021ZD0113503
  funderid: 10.13039/501100012166
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i176t-4b79e58d794ed7249ac47e642af42f74f12a1f29bb9baab4bebd3655286575683
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-4b79e58d794ed7249ac47e642af42f74f12a1f29bb9baab4bebd3655286575683
PageCount 11
ParticipantIDs ieee_primary_10656315
PublicationCentury 2000
PublicationDate 2024-June-16
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.3337538
Snippet Multimodal sentiment analysis (MSA) aims to understand human sentiment through multimodal data. Most MSA efforts are based on the assumption of modality...
SourceID ieee
SourceType Publisher
StartPage 12458
SubjectTerms Computer vision
Contrastive learning
Correlation
Incomplete multimodal learning
Multimodal sentiment analysis
Prototypes
Refining
Semantics
Sentiment analysis
Title Correlation-Decoupled Knowledge Distillation for Multimodal Sentiment Analysis with Incomplete Modalities
URI https://ieeexplore.ieee.org/document/10656315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J0_1UfHNHrxubZLNJntuLUVpKWqlt7KPCRRrWzS5-OudyUNRELyFsJBls5P9vsn3zTB2rXousXEIIjUehNQQCa2NEz4LvM6sQ4RKecjxRI1m8m4ez2uzeumFAYBSfAZduiz_5fuNKyhVhhGO6CMiS_kuMrfKrPWVUImQyiid1va4oKdv-s_TB6ovFiENDGWXPJbyRxOV8gwZttmkeXolHXnpFrntuo9fhRn_Pb191vm26_Hp10F0wHZgfcjaNb7kdfS-H7Fln1pxVOI3MUDeWWxXOOC-SavxAQX8qhrAEc3y0p77uvFmxR9JVkQT4E0dE045XI4fGFKlI_bmYxpYVmjtsNnw9qk_EnWrBbEMEpULaRMNceoxOsEnSMmMkwkgNzGZDLNEZkFogizU1mprjJUWrI9UHJOvNYlVGh2z1nqzhhPGLUQ-TBBpQEi15BDiaWdTp5zpeWusPmUdWrrFtqqmsWhW7eyP--dsj14fybMCdcFa-VsBlwgEcntVboBPeuu1rw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTuNAEC2xHODEFsROH-DoTNxuL33glIACIQgNi7hleilLiJAgSIRm_oVfmW-bKjvOCCSOSNwsq2WpXOXqV-X3qgEOkoZLbSwxyIzHQGmMAq2NC3weep1bRwiV-5Ddi6R9o87u4rsZeJtqYRCxIJ9hnS-Lf_l-6MbcKqMvnNBHFFYcyg7-fqUK7eXotEXuPJTy5Pi62Q4mhwgE92GajAJlU41x5inu0KdUbBinUiTUbXIl81TloTRhLrW12hpjlUXroySOWbGZxkkW0XNnYZ6ARixLedi0hRNR8ZTobCLICxv6R_P28idPNIuo8JSqzqpO9e7YlmLXOlmCv5W9JVnloT4e2br782EU5Ld9IctQ-y9IFJfTrXYFZnCwCksTBC0m-ellDe6bfNhISe8LWlRZj5_6tKBTNQ5Fi1Nav1wgCK-LQoD8OPSmL66YOMUGi2pSi-AutaAUyrx7qi5ElxcWM2hrcPMlZq_D3GA4wA0QFiMvU8JSKHlaHoFY7WzmEmca3hqrN6HGruo9lfNCepWXtj65vw8L7evuee_89KKzDYscOkxGC5MdmBs9j3GXYM_I7hXBJ-DXVzv3H-YDE08
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Correlation-Decoupled+Knowledge+Distillation+for+Multimodal+Sentiment+Analysis+with+Incomplete+Modalities&rft.au=Li%2C+Mingcheng&rft.au=Yang%2C+Dingkang&rft.au=Zhao%2C+Xiao&rft.au=Wang%2C+Shuaibing&rft.date=2024-06-16&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=12458&rft.epage=12468&rft_id=info:doi/10.1109%2FCVPR52733.2024.01184&rft.externalDocID=10656315