Enhancing Healthcare with EOG: A Novel Approach to Sleep Stage Classification
We introduce an innovative approach to automated sleep stage classification using electrooculogram (EOG) signals, addressing the discomfort and impracticality associated with electroencephalogram (EEG) data acquisition. In addition, this approach is untapped in the field, highlighting its potential...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 2305 - 2309 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We introduce an innovative approach to automated sleep stage classification using electrooculogram (EOG) signals, addressing the discomfort and impracticality associated with electroencephalogram (EEG) data acquisition. In addition, this approach is untapped in the field, highlighting its potential for novel insights and contributions. Our proposed SE-Resnet-Transformer model effectively classifies five distinct sleep stages from raw EOG signals. Extensive validation on publicly available databases (SleepEDF-20, SleepEDF-78, and SHHS) reveals performance, with macro-F1 scores of 74.72, 70.63, and 69.26, respectively. The model excels in identifying Rapid Eye Movement (REM) sleep, a crucial aspect of sleep disorder investigations. We also provide insight into the internal mechanisms of the model using techniques such as GradCAM and t-SNE plots. Our method improves the accessibility of sleep stage classification while decreasing the need for EEG modalities. This development will have promising implications for healthcare and the incorporation of wearable technology into sleep studies, thereby advancing the field's potential for enhanced diagnostics and patient comfort. |
---|---|
AbstractList | We introduce an innovative approach to automated sleep stage classification using electrooculogram (EOG) signals, addressing the discomfort and impracticality associated with electroencephalogram (EEG) data acquisition. In addition, this approach is untapped in the field, highlighting its potential for novel insights and contributions. Our proposed SE-Resnet-Transformer model effectively classifies five distinct sleep stages from raw EOG signals. Extensive validation on publicly available databases (SleepEDF-20, SleepEDF-78, and SHHS) reveals performance, with macro-F1 scores of 74.72, 70.63, and 69.26, respectively. The model excels in identifying Rapid Eye Movement (REM) sleep, a crucial aspect of sleep disorder investigations. We also provide insight into the internal mechanisms of the model using techniques such as GradCAM and t-SNE plots. Our method improves the accessibility of sleep stage classification while decreasing the need for EEG modalities. This development will have promising implications for healthcare and the incorporation of wearable technology into sleep studies, thereby advancing the field's potential for enhanced diagnostics and patient comfort. |
Author | Maiti, Suvadeep Sharma, Shivam Kumar Bapi, Raju S. |
Author_xml | – sequence: 1 givenname: Suvadeep surname: Maiti fullname: Maiti, Suvadeep organization: International Institute of Information Technology,Cognitive Science Lab,Hyderabad,India – sequence: 2 givenname: Shivam Kumar surname: Sharma fullname: Sharma, Shivam Kumar organization: International Institute of Information Technology,Cognitive Science Lab,Hyderabad,India – sequence: 3 givenname: Raju S. surname: Bapi fullname: Bapi, Raju S. organization: International Institute of Information Technology,Cognitive Science Lab,Hyderabad,India |
BookMark | eNo1j9tKw0AURUdRsK39Ax_GD0g8c0lm4lspvQjVClHwrZyZnDQjMQlJUPx7C-rT3rBgs_aUXTRtQ4zdCoiFgOzuYbnI82dttU1iCVLHArRODagzNs9MZlUCSp-gOGcTqUwWiQzerth0GN4BwBptJ-xx1VTY-NAc-ZawHiuPPfGvMFZ8td_c8wV_aj-p5ouu61v0FR9bntdEHc9HPBJf1jgMoQwex9A21-yyxHqg-V_O2Ot69bLcRrv95mS7i4Iw6RhpaZMEnC_QSVU4bSSQLR04W5a2lKKwmAopEylc4ZNTdT5FQl8YK6jwqGbs5nc3ENGh68MH9t-H__vqBzEaUfA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP48485.2024.10446703 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350344851 |
EISSN | 2379-190X |
EndPage | 2309 |
ExternalDocumentID | 10446703 |
Genre | orig-research |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i176t-428550bcdab23db4720e8fb0b8ff8f21d8a6122521bdc5612bc6aeacd781edca3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:36:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-428550bcdab23db4720e8fb0b8ff8f21d8a6122521bdc5612bc6aeacd781edca3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10446703 |
PublicationCentury | 2000 |
PublicationDate | 2024-April-14 |
PublicationDateYYYYMMDD | 2024-04-14 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.2805262 |
Snippet | We introduce an innovative approach to automated sleep stage classification using electrooculogram (EOG) signals, addressing the discomfort and impracticality... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2305 |
SubjectTerms | Automatic Sleep Staging Data acquisition Deep Learning Electric potential Electrooculogram (EOG) Electrooculography Medical services Polysomnography (PSG) Rapid Eye Movement (REM) Signal processing Speech enhancement |
Title | Enhancing Healthcare with EOG: A Novel Approach to Sleep Stage Classification |
URI | https://ieeexplore.ieee.org/document/10446703 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66B9EXbxPvRPC1tUmzJvNtjM0pbA7mYG8jl7MpjnZI54O_3pOumxcQfCuFtkkOzZcvOd93CLmOERINcBlIlyBBmZgo0BG3geQushG4utNeO9ztJZ2heBjVRqVYvdDCAECRfAahvyzO8l1mF36rDP9wJC_Se3tuInNbirXW066SQm2Rq9JE8-a-2RgM-kIJVUMWyEW4evhHGZUCRdq7pLf6_jJ55DVc5Ca0H7-sGf_dwD1S_RLs0f4aivbJBqQHZOeb1-Ah6bbSZ--tkU5pZ53zRf02LG093t3SBu1l7zCjjdJknOYZHcwA5hTXo1OgRfVMn1dUhLJKhu3WU7MTlLUUghcmkzxAloFcxFinDY-dEZJHoDAyRk0masKZUxrXOhzB3DjrK2Yam2iclJ1UDJzV8RGppFkKx4Qyo4FpYaO6N8-z1lh8URIbxix2vx6dkKofmfF8aZcxXg3K6R_3z8i2D5A_omHinFTytwVcINLn5rKI8CfP-KhT |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA2i4OXF28S7EXxtbdOsyXwbY7PTrQ62wd5GLl-nONohnQ_-epOumxcQfCuBliQfzclJvnM-hG4CA4kSCHOYDg1BSaTnCI8ohxHtKQ90TQurHe7GYTSkD6PqqBSrF1oYACiSz8C1j8Vdvs7U3B6VmT_ckBdmvT03DPBXyUKutVp4OaN8E12XNpq37Ua93-9RTnnV8EBC3eXrPwqpFDjS2kXxsgeL9JFXd55LV338Mmf8dxf3UOVLsod7KzDaR2uQHqCdb26Dh6jbTJ-tu0Y6wdEq6wvbg1jcfLq_w3UcZ-8wxfXSZhznGe5PAWbY7EgngIv6mTazqAhmBQ1bzUEjcspqCs6Lz8LcMTzDsBGptJAk0JIy4gE3sZE8SXhCfM2F2e0QA-dSK1szU6pQmGVZM-6DViI4QutplsIxwr4U4AuqvJq1z1NKKvOhMJC-r8zwa94JqtiZGc8Whhnj5aSc_tF-hbaiQbcz7rTjxzO0bYNlL2x8eo7W87c5XBjcz-VlEe1Py1SrnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Enhancing+Healthcare+with+EOG%3A+A+Novel+Approach+to+Sleep+Stage+Classification&rft.au=Maiti%2C+Suvadeep&rft.au=Sharma%2C+Shivam+Kumar&rft.au=Bapi%2C+Raju+S.&rft.date=2024-04-14&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=2305&rft.epage=2309&rft_id=info:doi/10.1109%2FICASSP48485.2024.10446703&rft.externalDocID=10446703 |