Enhancing Healthcare with EOG: A Novel Approach to Sleep Stage Classification

We introduce an innovative approach to automated sleep stage classification using electrooculogram (EOG) signals, addressing the discomfort and impracticality associated with electroencephalogram (EEG) data acquisition. In addition, this approach is untapped in the field, highlighting its potential...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 2305 - 2309
Main Authors Maiti, Suvadeep, Sharma, Shivam Kumar, Bapi, Raju S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce an innovative approach to automated sleep stage classification using electrooculogram (EOG) signals, addressing the discomfort and impracticality associated with electroencephalogram (EEG) data acquisition. In addition, this approach is untapped in the field, highlighting its potential for novel insights and contributions. Our proposed SE-Resnet-Transformer model effectively classifies five distinct sleep stages from raw EOG signals. Extensive validation on publicly available databases (SleepEDF-20, SleepEDF-78, and SHHS) reveals performance, with macro-F1 scores of 74.72, 70.63, and 69.26, respectively. The model excels in identifying Rapid Eye Movement (REM) sleep, a crucial aspect of sleep disorder investigations. We also provide insight into the internal mechanisms of the model using techniques such as GradCAM and t-SNE plots. Our method improves the accessibility of sleep stage classification while decreasing the need for EEG modalities. This development will have promising implications for healthcare and the incorporation of wearable technology into sleep studies, thereby advancing the field's potential for enhanced diagnostics and patient comfort.
AbstractList We introduce an innovative approach to automated sleep stage classification using electrooculogram (EOG) signals, addressing the discomfort and impracticality associated with electroencephalogram (EEG) data acquisition. In addition, this approach is untapped in the field, highlighting its potential for novel insights and contributions. Our proposed SE-Resnet-Transformer model effectively classifies five distinct sleep stages from raw EOG signals. Extensive validation on publicly available databases (SleepEDF-20, SleepEDF-78, and SHHS) reveals performance, with macro-F1 scores of 74.72, 70.63, and 69.26, respectively. The model excels in identifying Rapid Eye Movement (REM) sleep, a crucial aspect of sleep disorder investigations. We also provide insight into the internal mechanisms of the model using techniques such as GradCAM and t-SNE plots. Our method improves the accessibility of sleep stage classification while decreasing the need for EEG modalities. This development will have promising implications for healthcare and the incorporation of wearable technology into sleep studies, thereby advancing the field's potential for enhanced diagnostics and patient comfort.
Author Maiti, Suvadeep
Sharma, Shivam Kumar
Bapi, Raju S.
Author_xml – sequence: 1
  givenname: Suvadeep
  surname: Maiti
  fullname: Maiti, Suvadeep
  organization: International Institute of Information Technology,Cognitive Science Lab,Hyderabad,India
– sequence: 2
  givenname: Shivam Kumar
  surname: Sharma
  fullname: Sharma, Shivam Kumar
  organization: International Institute of Information Technology,Cognitive Science Lab,Hyderabad,India
– sequence: 3
  givenname: Raju S.
  surname: Bapi
  fullname: Bapi, Raju S.
  organization: International Institute of Information Technology,Cognitive Science Lab,Hyderabad,India
BookMark eNo1j9tKw0AURUdRsK39Ax_GD0g8c0lm4lspvQjVClHwrZyZnDQjMQlJUPx7C-rT3rBgs_aUXTRtQ4zdCoiFgOzuYbnI82dttU1iCVLHArRODagzNs9MZlUCSp-gOGcTqUwWiQzerth0GN4BwBptJ-xx1VTY-NAc-ZawHiuPPfGvMFZ8td_c8wV_aj-p5ouu61v0FR9bntdEHc9HPBJf1jgMoQwex9A21-yyxHqg-V_O2Ot69bLcRrv95mS7i4Iw6RhpaZMEnC_QSVU4bSSQLR04W5a2lKKwmAopEylc4ZNTdT5FQl8YK6jwqGbs5nc3ENGh68MH9t-H__vqBzEaUfA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP48485.2024.10446703
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350344851
EISSN 2379-190X
EndPage 2309
ExternalDocumentID 10446703
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-428550bcdab23db4720e8fb0b8ff8f21d8a6122521bdc5612bc6aeacd781edca3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:36:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-428550bcdab23db4720e8fb0b8ff8f21d8a6122521bdc5612bc6aeacd781edca3
PageCount 5
ParticipantIDs ieee_primary_10446703
PublicationCentury 2000
PublicationDate 2024-April-14
PublicationDateYYYYMMDD 2024-04-14
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2805262
Snippet We introduce an innovative approach to automated sleep stage classification using electrooculogram (EOG) signals, addressing the discomfort and impracticality...
SourceID ieee
SourceType Publisher
StartPage 2305
SubjectTerms Automatic Sleep Staging
Data acquisition
Deep Learning
Electric potential
Electrooculogram (EOG)
Electrooculography
Medical services
Polysomnography (PSG)
Rapid Eye Movement (REM)
Signal processing
Speech enhancement
Title Enhancing Healthcare with EOG: A Novel Approach to Sleep Stage Classification
URI https://ieeexplore.ieee.org/document/10446703
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66B9EXbxPvRPC1tUmzJvNtjM0pbA7mYG8jl7MpjnZI54O_3pOumxcQfCuFtkkOzZcvOd93CLmOERINcBlIlyBBmZgo0BG3geQushG4utNeO9ztJZ2heBjVRqVYvdDCAECRfAahvyzO8l1mF36rDP9wJC_Se3tuInNbirXW066SQm2Rq9JE8-a-2RgM-kIJVUMWyEW4evhHGZUCRdq7pLf6_jJ55DVc5Ca0H7-sGf_dwD1S_RLs0f4aivbJBqQHZOeb1-Ah6bbSZ--tkU5pZ53zRf02LG093t3SBu1l7zCjjdJknOYZHcwA5hTXo1OgRfVMn1dUhLJKhu3WU7MTlLUUghcmkzxAloFcxFinDY-dEZJHoDAyRk0masKZUxrXOhzB3DjrK2Yam2iclJ1UDJzV8RGppFkKx4Qyo4FpYaO6N8-z1lh8URIbxix2vx6dkKofmfF8aZcxXg3K6R_3z8i2D5A_omHinFTytwVcINLn5rKI8CfP-KhT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA2i4OXF28S7EXxtbdOsyXwbY7PTrQ62wd5GLl-nONohnQ_-epOumxcQfCuBliQfzclJvnM-hG4CA4kSCHOYDg1BSaTnCI8ohxHtKQ90TQurHe7GYTSkD6PqqBSrF1oYACiSz8C1j8Vdvs7U3B6VmT_ckBdmvT03DPBXyUKutVp4OaN8E12XNpq37Ua93-9RTnnV8EBC3eXrPwqpFDjS2kXxsgeL9JFXd55LV338Mmf8dxf3UOVLsod7KzDaR2uQHqCdb26Dh6jbTJ-tu0Y6wdEq6wvbg1jcfLq_w3UcZ-8wxfXSZhznGe5PAWbY7EgngIv6mTazqAhmBQ1bzUEjcspqCs6Lz8LcMTzDsBGptJAk0JIy4gE3sZE8SXhCfM2F2e0QA-dSK1szU6pQmGVZM-6DViI4QutplsIxwr4U4AuqvJq1z1NKKvOhMJC-r8zwa94JqtiZGc8Whhnj5aSc_tF-hbaiQbcz7rTjxzO0bYNlL2x8eo7W87c5XBjcz-VlEe1Py1SrnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Enhancing+Healthcare+with+EOG%3A+A+Novel+Approach+to+Sleep+Stage+Classification&rft.au=Maiti%2C+Suvadeep&rft.au=Sharma%2C+Shivam+Kumar&rft.au=Bapi%2C+Raju+S.&rft.date=2024-04-14&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=2305&rft.epage=2309&rft_id=info:doi/10.1109%2FICASSP48485.2024.10446703&rft.externalDocID=10446703