Enhanced Remote Sensing Instance Segmentation with Feature Fusion

Instance segmentation in the field of remote sensing imagery is recognized as a complex and difficult task. Previous approaches suffer from inadequate feature fusion, insufficient learning of shape information, and lack of segmentation of object edges. To address these challenges, we introduce FEA-N...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Geoscience and Remote Sensing Symposium proceedings pp. 7107 - 7110
Main Authors Tao, Zhiwei, Li, Yangyang, Hao, Xuanting, Wu, Bin, Shang, Ronghua, Jiao, Licheng
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.07.2024
Subjects
Online AccessGet full text
ISSN2153-7003
DOI10.1109/IGARSS53475.2024.10640731

Cover

Loading…
Abstract Instance segmentation in the field of remote sensing imagery is recognized as a complex and difficult task. Previous approaches suffer from inadequate feature fusion, insufficient learning of shape information, and lack of segmentation of object edges. To address these challenges, we introduce FEA-Net(Fusion Edge-Aware Instance Segmentation Network), a multiple information fusion model for remote sensing image instance segmentation. Our model makes the predicted instance masks more accurate and can effectively improve the instance segmentation performance of high-resolution remote sensing images. We have evaluated our method on two datasets, NWPU VHR-10, and the iSAID. The experimental results demonstrate the effectiveness of our method, showing strong performance.
AbstractList Instance segmentation in the field of remote sensing imagery is recognized as a complex and difficult task. Previous approaches suffer from inadequate feature fusion, insufficient learning of shape information, and lack of segmentation of object edges. To address these challenges, we introduce FEA-Net(Fusion Edge-Aware Instance Segmentation Network), a multiple information fusion model for remote sensing image instance segmentation. Our model makes the predicted instance masks more accurate and can effectively improve the instance segmentation performance of high-resolution remote sensing images. We have evaluated our method on two datasets, NWPU VHR-10, and the iSAID. The experimental results demonstrate the effectiveness of our method, showing strong performance.
Author Shang, Ronghua
Hao, Xuanting
Tao, Zhiwei
Jiao, Licheng
Wu, Bin
Li, Yangyang
Author_xml – sequence: 1
  givenname: Zhiwei
  surname: Tao
  fullname: Tao, Zhiwei
  organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071
– sequence: 2
  givenname: Yangyang
  surname: Li
  fullname: Li, Yangyang
  organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071
– sequence: 3
  givenname: Xuanting
  surname: Hao
  fullname: Hao, Xuanting
  organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071
– sequence: 4
  givenname: Bin
  surname: Wu
  fullname: Wu, Bin
  organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071
– sequence: 5
  givenname: Ronghua
  surname: Shang
  fullname: Shang, Ronghua
  organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071
– sequence: 6
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
  organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071
BookMark eNo1j91Kw0AUhFdRsK19Ay_iAySezcn-XYbS1EJBaPS6bJKTNmI2kt0ivr0p6tV8zMAwM2c3bnDE2COHhHMwT9tNvi9LgZkSSQpplnCQGSjkV2xplNEoACVgKq7ZLOUCYwWAd2zu_fsEOgWYsXztTtbV1ER76odAUUnOd-4YbZ0Pl2Ayjj25YEM3uOirC6eoIBvOI0XF2U_ePbtt7Yen5Z8u2Fuxfl09x7uXzXaV7-KOKxlibK2ywkhNtdBKVUIjbzi3xGtBjSEQbWoao5CmwTCBrqSuaotc1rKqGlywh9_ejogOn2PX2_H78H8ZfwBO0025
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS53475.2024.10640731
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9798350360325
EISSN 2153-7003
EndPage 7110
ExternalDocumentID 10640731
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-3fa7a5968ec5877b5831d11ae1c5ed9e05f29d973e3250d978b68bca316c6bbd3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:02:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-3fa7a5968ec5877b5831d11ae1c5ed9e05f29d973e3250d978b68bca316c6bbd3
PageCount 4
ParticipantIDs ieee_primary_10640731
PublicationCentury 2000
PublicationDate 2024-July-7
PublicationDateYYYYMMDD 2024-07-07
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-7
  day: 07
PublicationDecade 2020
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.8856552
Snippet Instance segmentation in the field of remote sensing imagery is recognized as a complex and difficult task. Previous approaches suffer from inadequate feature...
SourceID ieee
SourceType Publisher
StartPage 7107
SubjectTerms Accuracy
Feature fusion
Image edge detection
Instance segmentation
Location awareness
Prediction algorithms
Predictive models
Remote sensing images
Shape
Title Enhanced Remote Sensing Instance Segmentation with Feature Fusion
URI https://ieeexplore.ieee.org/document/10640731
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86UHzya-I3EXxtbZfm63HI5ubDkM3B3kaTXqeInYz2Qf96c1mrKAi-hUBoyNH8frm73x0h14kyzGTMBsrqPHC3JA9UJ0NPnOYZaOkwx1f7HInBNLmf8VktVvdaGADwyWcQ4tDH8rOlrdBV5v5wDDuhanrTvdzWYq3m2mUOyqJtclUX0bwZ3nXHkwlnieTuFdhJwmbxjzYqHkX6u2TUfH-dPPISVqUJ7cev0oz_3uAeaX8L9ujDFxTtkw0oDsjWne_a-35Iur3iyUf66RicaYBOMG29WNChJ4cWJxavtQqpoOibpcgNqxXQfoX-tDaZ9nuPt4Og7p0QPMdSlAHLU5lyLRRYrqQ0XLE4i-MUYssh0xDxvKMzLRkwR4LcQBmhjE1ZLKwwznpHpFUsCzgmVAqTao1EQWL1QsdHmI1yiBzRikSU5iekjScxf1uXx5g3h3D6x_wZ2UGD-JxXeU5a5aqCC4fspbn0Fv0EcoWg0A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA5S8Xjyqngbwdddd5vN9Vikl9YiPaBvZZOdrSJupew-6K83SXcVBcG3EAiEDMn3ZWa-GYSuI6GISoj2hJapZ15J6olGYj1xkiYgucEcV-1zwLqT6G5Kp6VY3WlhAMAln4Fvhy6Wnyx0YV1l5obbsJNVTa8b4I_kSq5VPbzEgFmwia7KMpo3vU5zOBpREnFq_oGNyK-W_2ik4nCkvYMG1Q5W6SMvfpErX3_8Ks747y3uovq3ZA8_foHRHlqDbB9tdFzf3vcD1GxlTy7Wj4dgjAN4ZBPXsznuOXqo7cT8tdQhZdh6Z7Flh8UScLuwHrU6mrRb49uuV3ZP8J5DznKPpDGPqWQCNBWcKypImIRhDKGmkEgIaNqQieQEiKFBZiAUE0rHJGSaKWO_Q1TLFhkcIcyZiqW0VIHb-oWGkRAdpBAYqhWwIE6PUd2exOxtVSBjVh3CyR_zl2irO37oz_q9wf0p2rbGcRmw_AzV8mUB5wbnc3XhrPsJFzikIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Enhanced+Remote+Sensing+Instance+Segmentation+with+Feature+Fusion&rft.au=Tao%2C+Zhiwei&rft.au=Li%2C+Yangyang&rft.au=Hao%2C+Xuanting&rft.au=Wu%2C+Bin&rft.date=2024-07-07&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=7107&rft.epage=7110&rft_id=info:doi/10.1109%2FIGARSS53475.2024.10640731&rft.externalDocID=10640731