Enhanced Remote Sensing Instance Segmentation with Feature Fusion
Instance segmentation in the field of remote sensing imagery is recognized as a complex and difficult task. Previous approaches suffer from inadequate feature fusion, insufficient learning of shape information, and lack of segmentation of object edges. To address these challenges, we introduce FEA-N...
Saved in:
Published in | IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 7107 - 7110 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
07.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2153-7003 |
DOI | 10.1109/IGARSS53475.2024.10640731 |
Cover
Loading…
Abstract | Instance segmentation in the field of remote sensing imagery is recognized as a complex and difficult task. Previous approaches suffer from inadequate feature fusion, insufficient learning of shape information, and lack of segmentation of object edges. To address these challenges, we introduce FEA-Net(Fusion Edge-Aware Instance Segmentation Network), a multiple information fusion model for remote sensing image instance segmentation. Our model makes the predicted instance masks more accurate and can effectively improve the instance segmentation performance of high-resolution remote sensing images. We have evaluated our method on two datasets, NWPU VHR-10, and the iSAID. The experimental results demonstrate the effectiveness of our method, showing strong performance. |
---|---|
AbstractList | Instance segmentation in the field of remote sensing imagery is recognized as a complex and difficult task. Previous approaches suffer from inadequate feature fusion, insufficient learning of shape information, and lack of segmentation of object edges. To address these challenges, we introduce FEA-Net(Fusion Edge-Aware Instance Segmentation Network), a multiple information fusion model for remote sensing image instance segmentation. Our model makes the predicted instance masks more accurate and can effectively improve the instance segmentation performance of high-resolution remote sensing images. We have evaluated our method on two datasets, NWPU VHR-10, and the iSAID. The experimental results demonstrate the effectiveness of our method, showing strong performance. |
Author | Shang, Ronghua Hao, Xuanting Tao, Zhiwei Jiao, Licheng Wu, Bin Li, Yangyang |
Author_xml | – sequence: 1 givenname: Zhiwei surname: Tao fullname: Tao, Zhiwei organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071 – sequence: 2 givenname: Yangyang surname: Li fullname: Li, Yangyang organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071 – sequence: 3 givenname: Xuanting surname: Hao fullname: Hao, Xuanting organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071 – sequence: 4 givenname: Bin surname: Wu fullname: Wu, Bin organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071 – sequence: 5 givenname: Ronghua surname: Shang fullname: Shang, Ronghua organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071 – sequence: 6 givenname: Licheng surname: Jiao fullname: Jiao, Licheng organization: Xidian University,The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Hangzhou Institute of Technology,Xi'an,China,710071 |
BookMark | eNo1j91Kw0AUhFdRsK19Ay_iAySezcn-XYbS1EJBaPS6bJKTNmI2kt0ivr0p6tV8zMAwM2c3bnDE2COHhHMwT9tNvi9LgZkSSQpplnCQGSjkV2xplNEoACVgKq7ZLOUCYwWAd2zu_fsEOgWYsXztTtbV1ER76odAUUnOd-4YbZ0Pl2Ayjj25YEM3uOirC6eoIBvOI0XF2U_ePbtt7Yen5Z8u2Fuxfl09x7uXzXaV7-KOKxlibK2ywkhNtdBKVUIjbzi3xGtBjSEQbWoao5CmwTCBrqSuaotc1rKqGlywh9_ejogOn2PX2_H78H8ZfwBO0025 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS53475.2024.10640731 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 9798350360325 |
EISSN | 2153-7003 |
EndPage | 7110 |
ExternalDocumentID | 10640731 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i176t-3fa7a5968ec5877b5831d11ae1c5ed9e05f29d973e3250d978b68bca316c6bbd3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:02:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-3fa7a5968ec5877b5831d11ae1c5ed9e05f29d973e3250d978b68bca316c6bbd3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10640731 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-7 |
PublicationDateYYYYMMDD | 2024-07-07 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-7 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Geoscience and Remote Sensing Symposium proceedings |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 1.8856552 |
Snippet | Instance segmentation in the field of remote sensing imagery is recognized as a complex and difficult task. Previous approaches suffer from inadequate feature... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7107 |
SubjectTerms | Accuracy Feature fusion Image edge detection Instance segmentation Location awareness Prediction algorithms Predictive models Remote sensing images Shape |
Title | Enhanced Remote Sensing Instance Segmentation with Feature Fusion |
URI | https://ieeexplore.ieee.org/document/10640731 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86UHzya-I3EXxtbZfm63HI5ubDkM3B3kaTXqeInYz2Qf96c1mrKAi-hUBoyNH8frm73x0h14kyzGTMBsrqPHC3JA9UJ0NPnOYZaOkwx1f7HInBNLmf8VktVvdaGADwyWcQ4tDH8rOlrdBV5v5wDDuhanrTvdzWYq3m2mUOyqJtclUX0bwZ3nXHkwlnieTuFdhJwmbxjzYqHkX6u2TUfH-dPPISVqUJ7cev0oz_3uAeaX8L9ujDFxTtkw0oDsjWne_a-35Iur3iyUf66RicaYBOMG29WNChJ4cWJxavtQqpoOibpcgNqxXQfoX-tDaZ9nuPt4Og7p0QPMdSlAHLU5lyLRRYrqQ0XLE4i-MUYssh0xDxvKMzLRkwR4LcQBmhjE1ZLKwwznpHpFUsCzgmVAqTao1EQWL1QsdHmI1yiBzRikSU5iekjScxf1uXx5g3h3D6x_wZ2UGD-JxXeU5a5aqCC4fspbn0Fv0EcoWg0A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA5S8Xjyqngbwdddd5vN9Vikl9YiPaBvZZOdrSJupew-6K83SXcVBcG3EAiEDMn3ZWa-GYSuI6GISoj2hJapZ15J6olGYj1xkiYgucEcV-1zwLqT6G5Kp6VY3WlhAMAln4Fvhy6Wnyx0YV1l5obbsJNVTa8b4I_kSq5VPbzEgFmwia7KMpo3vU5zOBpREnFq_oGNyK-W_2ik4nCkvYMG1Q5W6SMvfpErX3_8Ks747y3uovq3ZA8_foHRHlqDbB9tdFzf3vcD1GxlTy7Wj4dgjAN4ZBPXsznuOXqo7cT8tdQhZdh6Z7Flh8UScLuwHrU6mrRb49uuV3ZP8J5DznKPpDGPqWQCNBWcKypImIRhDKGmkEgIaNqQieQEiKFBZiAUE0rHJGSaKWO_Q1TLFhkcIcyZiqW0VIHb-oWGkRAdpBAYqhWwIE6PUd2exOxtVSBjVh3CyR_zl2irO37oz_q9wf0p2rbGcRmw_AzV8mUB5wbnc3XhrPsJFzikIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Enhanced+Remote+Sensing+Instance+Segmentation+with+Feature+Fusion&rft.au=Tao%2C+Zhiwei&rft.au=Li%2C+Yangyang&rft.au=Hao%2C+Xuanting&rft.au=Wu%2C+Bin&rft.date=2024-07-07&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=7107&rft.epage=7110&rft_id=info:doi/10.1109%2FIGARSS53475.2024.10640731&rft.externalDocID=10640731 |