Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering

Neural rendering methods have significantly advanced photo-realistic 3D scene rendering in various academic and industrial applications. The recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed combining the benefits of both primitive-based representation...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 20654 - 20664
Main Authors Lu, Tao, Yu, Mulin, Xu, Linning, Xiangli, Yuanbo, Wang, Limin, Lin, Dahua, Dai, Bo
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.06.2024
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR52733.2024.01952

Cover

Loading…
Abstract Neural rendering methods have significantly advanced photo-realistic 3D scene rendering in various academic and industrial applications. The recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed combining the benefits of both primitive-based representations and volumetric representations. However, it often leads to heavily redundant Gaussians that try to fit every training view, neglecting the underlying scene ge-ometry. Consequently, the resulting model becomes less robust to significant view changes, texture-less area and lighting effects. We introduce Scaffold-GS, which uses an-chor points to distribute local 3D Gaussians, and predicts their attributes on-the-fly based on viewing direction and distance within the view frustum. Anchor growing and pruning strategies are developed based on the importance of neural Gaussians to reliably improve the scene cover-age. We show that our method effectively reduces redun-dant Gaussians while delivering high-quality rendering. We also demonstrates an enhanced capability to accommodate scenes with varying levels-of-detail and view-dependent ob-servations, without sacrificing the rendering speed. Project page: https://city-super.github.iolscaffold-gsl.
AbstractList Neural rendering methods have significantly advanced photo-realistic 3D scene rendering in various academic and industrial applications. The recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed combining the benefits of both primitive-based representations and volumetric representations. However, it often leads to heavily redundant Gaussians that try to fit every training view, neglecting the underlying scene ge-ometry. Consequently, the resulting model becomes less robust to significant view changes, texture-less area and lighting effects. We introduce Scaffold-GS, which uses an-chor points to distribute local 3D Gaussians, and predicts their attributes on-the-fly based on viewing direction and distance within the view frustum. Anchor growing and pruning strategies are developed based on the importance of neural Gaussians to reliably improve the scene cover-age. We show that our method effectively reduces redun-dant Gaussians while delivering high-quality rendering. We also demonstrates an enhanced capability to accommodate scenes with varying levels-of-detail and view-dependent ob-servations, without sacrificing the rendering speed. Project page: https://city-super.github.iolscaffold-gsl.
Author Wang, Limin
Dai, Bo
Xiangli, Yuanbo
Lu, Tao
Xu, Linning
Lin, Dahua
Yu, Mulin
Author_xml – sequence: 1
  givenname: Tao
  surname: Lu
  fullname: Lu, Tao
  email: taolu@smail.nju.edu.cn
  organization: Shanghai Artificial Intelligence Laboratory
– sequence: 2
  givenname: Mulin
  surname: Yu
  fullname: Yu, Mulin
  email: yumulin@pjlab.org.cn
  organization: Shanghai Artificial Intelligence Laboratory
– sequence: 3
  givenname: Linning
  surname: Xu
  fullname: Xu, Linning
  email: linningxu@link.cuhk.edu.hk
  organization: Nanjing University
– sequence: 4
  givenname: Yuanbo
  surname: Xiangli
  fullname: Xiangli, Yuanbo
  email: yx642@cornell.edu
  organization: Cornell University
– sequence: 5
  givenname: Limin
  surname: Wang
  fullname: Wang, Limin
  email: Imwang@nju.edu.cn
  organization: Nanjing University
– sequence: 6
  givenname: Dahua
  surname: Lin
  fullname: Lin, Dahua
  email: dhlin@ie.cuhk.edu.hk
  organization: Shanghai Artificial Intelligence Laboratory
– sequence: 7
  givenname: Bo
  surname: Dai
  fullname: Dai, Bo
  email: daibo@pjlab.org.cn
  organization: Shanghai Artificial Intelligence Laboratory
BookMark eNotz99KwzAUgPEoCs7ZN9hFX6DznMSTJl455qzCQFl1tyNtTiQy29E_im_vQK9-dx98l-KsaRsWYoYwRwR7vdy-bEjmSs0lyJs5oCV5IhKbW6MIFCkAfSomCFpl2qK9EEnffwCAkojamom4K2sXQrv3WVHepuXQjfUwduxTdZ8Wbuz76Jo-DW2XbiN_ZwvvDkP84nTDjecuNu9X4jy4fc_Jv1Px9rB6XT5m6-fiablYZxFzPWQqOGJJuqqhRk-Q1zn5SlfkwElrjoB3DKidrcmAJp9L1iY4ZQMySDUVs79uZObdoYufrvvZHc_IEBr1C848S90
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52733.2024.01952
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350353006
EISSN 1063-6919
EndPage 20664
ExternalDocumentID 10658518
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2022ZD0160201
  funderid: 10.13039/501100012166
– fundername: Innovation and Technology Commission (ITC)'s InnoHK
  funderid: 10.13039/501100003452
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i176t-3fa5e256bc0c1d507c75db6b5a0a2985a00dae016a9c58065d72e68fa39f1e023
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-3fa5e256bc0c1d507c75db6b5a0a2985a00dae016a9c58065d72e68fa39f1e023
PageCount 11
ParticipantIDs ieee_primary_10658518
PublicationCentury 2000
PublicationDate 2024-June-16
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.661656
Snippet Neural rendering methods have significantly advanced photo-realistic 3D scene rendering in various academic and industrial applications. The recent 3D Gaussian...
SourceID ieee
SourceType Publisher
StartPage 20654
SubjectTerms Computational modeling
Computer vision
Gaussian Splatting
Lighting
Neural Rendering
Rendering (computer graphics)
Semantics
Three-dimensional displays
Training
Title Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering
URI https://ieeexplore.ieee.org/document/10658518
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEF6qp57sw9I3e-h10yS72SQ9tdiq9CCiVbzJ7mYC0qJSDYX--s7EaGmhUHJICEses-zON49vhrGbKJPSuEgLML4SCqQRNo6cgJBc8dbFOICyLXq6O1LPk2hSkdVLLgwAlMln4NFlGcvPFq4gVxmucE1RrKTGami5bchaO4eKRFNGp0lFjwv89LY17g-ovphEMzBUHlHjwh9NVEod0m6w3vbtm9SRV69YW899_irM-O_PO2DNb7oe7-8U0SHbg_kRa1T4klerd3XM7ofO5PniLROd4R0flpVji3ccIh95xxQr4lOuOKJYPp7Bh3jIzJI2Qz4o283ho5ts1H56aXVF1UFBzIJYr4XMTQQIaqzzXZAh9CPZW20j45swTfDkZwYQ9ZnURRRizeIQdJIbmeYBoDo_YfX5Yg6njGtlLfVH1zJWKs5Di4rd2NBZPHAXUGesSRKZLjdFMqZbYZz_cf-C7dOsUNZVoC9ZHf8ZrlC_r-11Oa9f7f-jtw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvRUHxXf7sHrxiT7SOJJqbZVayl90VvZV6AobbENgr_e2TStKAiSw4ZlyWOW3W92Zr4ZhK64oVRqLoiVPiPMUklUxDWxoTPFKx3BABdt0RKNPnsa8mFBVs-5MNbaPPjMeu429-Wbqc6cqQxWuHBerHgTbQHw82BJ11qbVCgcZkQSFwS5wE-uq4N2x2UYo3AQDJnnyHHhjzIqOYrUyqi1ev8yeOTVyxbK05-_UjP--wN3UeWbsIfbayjaQxt2so_KhYaJi_U7P0C3XS3TdPpmSL17g7t57tjsHYbQe1yX2dwxKucY9Fg8GNsPcmfkzG2HuJMXnINHV1C_9tCrNkhRQ4GMg0gsCE0lt6DWKO3rwIDy56SvhOLSl2ESQ-MbaUHvk4nmzslqotCKOJU0SQMLgH6ISpPpxB4hLJhSrkK6oBFjURoqgHapQq3ggn2AHaOKk8hotkyTMVoJ4-SP_ku03ei9NEfNx9bzKdpxM-RisAJxhkrw__Yc0H6hLvI5_gKr7KcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Scaffold-GS%3A+Structured+3D+Gaussians+for+View-Adaptive+Rendering&rft.au=Lu%2C+Tao&rft.au=Yu%2C+Mulin&rft.au=Xu%2C+Linning&rft.au=Xiangli%2C+Yuanbo&rft.date=2024-06-16&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=20654&rft.epage=20664&rft_id=info:doi/10.1109%2FCVPR52733.2024.01952&rft.externalDocID=10658518