Identifying Worker Motion Through a Manufacturing Plant: A Finite Automaton Model

Autonomous Guided Vehicles (AGVs) are becoming increasingly common in industrial environments to transport heavy equipment around warehouses. Within the idea of Industry 5.0, these AGVs are expected to work alongside humans in the same shared workspace. To enable smooth and trustworthy interaction b...

Full description

Saved in:
Bibliographic Details
Published inIEEE RO-MAN pp. 1970 - 1977
Main Authors Yang, Shaoze, Bhat, Shreyas, Ren, Yutong, Pridham, Paul, Yang, X. Jessie, Stroup, Terra, Salour, Al
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autonomous Guided Vehicles (AGVs) are becoming increasingly common in industrial environments to transport heavy equipment around warehouses. Within the idea of Industry 5.0, these AGVs are expected to work alongside humans in the same shared workspace. To enable smooth and trustworthy interaction between workers and AGVs, the AGVs must be able to model the workers' behavior and plan their trajectories around it. In this paper, we introduce a Finite Automaton Model (FAM) to model worker motion in such a context. We conduct a human subject experiment using a Virtual Reality (VR) environment and an omnidirectional treadmill to collect data about worker trajectories to tune our model. We show that not only is our model more interpretable, but also outperforms machine learning models at classifying worker motion behavior with limited training data. Future research can use our model to modify AGV behavior to promote trustworthy human-AGV interaction.
AbstractList Autonomous Guided Vehicles (AGVs) are becoming increasingly common in industrial environments to transport heavy equipment around warehouses. Within the idea of Industry 5.0, these AGVs are expected to work alongside humans in the same shared workspace. To enable smooth and trustworthy interaction between workers and AGVs, the AGVs must be able to model the workers' behavior and plan their trajectories around it. In this paper, we introduce a Finite Automaton Model (FAM) to model worker motion in such a context. We conduct a human subject experiment using a Virtual Reality (VR) environment and an omnidirectional treadmill to collect data about worker trajectories to tune our model. We show that not only is our model more interpretable, but also outperforms machine learning models at classifying worker motion behavior with limited training data. Future research can use our model to modify AGV behavior to promote trustworthy human-AGV interaction.
Author Stroup, Terra
Yang, Shaoze
Yang, X. Jessie
Bhat, Shreyas
Ren, Yutong
Pridham, Paul
Salour, Al
Author_xml – sequence: 1
  givenname: Shaoze
  surname: Yang
  fullname: Yang, Shaoze
  email: shaozey@umich.edu
  organization: The University of Michigan,Department of Industrial and Operations Engineering,Ann Arbor,MI,48109
– sequence: 2
  givenname: Shreyas
  surname: Bhat
  fullname: Bhat, Shreyas
  email: shreyasb@umich.edu
  organization: The University of Michigan,Department of Industrial and Operations Engineering,Ann Arbor,MI,48109
– sequence: 3
  givenname: Yutong
  surname: Ren
  fullname: Ren, Yutong
  email: rentony@umich.edu
  organization: The University of Michigan,Department of Industrial and Operations Engineering,Ann Arbor,MI,48109
– sequence: 4
  givenname: Paul
  surname: Pridham
  fullname: Pridham, Paul
  email: pridham@umich.edu
  organization: The University of Michigan,Department of Industrial and Operations Engineering,Ann Arbor,MI,48109
– sequence: 5
  givenname: X. Jessie
  surname: Yang
  fullname: Yang, X. Jessie
  email: xijyang@umich.edu
  organization: The University of Michigan,Department of Industrial and Operations Engineering,Ann Arbor,MI,48109
– sequence: 6
  givenname: Terra
  surname: Stroup
  fullname: Stroup, Terra
  email: terra.a.stroup@boeing.com
  organization: The Boeing Company,Arlington,VA,22202
– sequence: 7
  givenname: Al
  surname: Salour
  fullname: Salour, Al
  email: al.salour@boeing.com
  organization: The Boeing Company,Arlington,VA,22202
BookMark eNo1kMFOAjEURavRRET-wEX9gMG-tjOdupsQURJG1GBcktJ5hSq0Zqaz4O_FqHdzN-eexb0kZyEGJOQG2BiA6dvXRVZXTwWDohxzxuUYmBIgCnZCRlrpUuRMqJxxfkoGoKXMtBTqgoy67oMdoyWAygfkZdZgSN4dfNjQ99h-YkvrmHwMdLltY7_ZUkNrE3pnbOrbH-p5Z0K6oxWd-uAT0qpPcW_ScVHHBndX5NyZXYejvx6St-n9cvKYzRcPs0k1zzyoImUc0TrleNkUpbBowWloGrAgYW1ljoXUzDVas1yjYcYKV6pmzZk2QkincjEk179ej4irr9bvTXtY_b8gvgHMtVQa
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/RO-MAN60168.2024.10731360
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350375022
EISSN 1944-9437
EndPage 1977
ExternalDocumentID 10731360
Genre orig-research
GrantInformation_xml – fundername: Boeing
  funderid: 10.13039/100000003
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-2eecf7f28d683cec1f91dd1c141bc45e6490fd99059ea0ac3f87db209a334f753
IEDL.DBID RIE
IngestDate Wed Aug 27 03:01:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-2eecf7f28d683cec1f91dd1c141bc45e6490fd99059ea0ac3f87db209a334f753
PageCount 8
ParticipantIDs ieee_primary_10731360
PublicationCentury 2000
PublicationDate 2024-Aug.-26
PublicationDateYYYYMMDD 2024-08-26
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-26
  day: 26
PublicationDecade 2020
PublicationTitle IEEE RO-MAN
PublicationTitleAbbrev RO-MAN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000941175
Score 2.266134
Snippet Autonomous Guided Vehicles (AGVs) are becoming increasingly common in industrial environments to transport heavy equipment around warehouses. Within the idea...
SourceID ieee
SourceType Publisher
StartPage 1970
SubjectTerms Accuracy
Context modeling
Data models
Hidden Markov models
Layout
Learning automata
Manufacturing
Predictive models
Solid modeling
Trajectory
Title Identifying Worker Motion Through a Manufacturing Plant: A Finite Automaton Model
URI https://ieeexplore.ieee.org/document/10731360
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3bS8MwFMaD7kH0xdvEOxF8TW0uTVrfhjiG0Hlhg72NJjmBoXQy2hf_epN2mxcQfCuBQEgoJ-fk_L4PoWsdC8GctYRxSIlIDJA0lZQkgsVKy8xRFnjnfCgHY_EwSSZLWL1hYQCgaT6DKHw2b_l2bupQKvN_uOKUS5-hb_rMrYW11gUVn6cE2cktdLXU0bx5eSR5bxj0RkIPFxPRav4PJ5UmkPR30XC1hLZ_5DWqKx2Zj1_qjP9e4x7qfjF7-GkdjfbRBpQHaOeb3OAhem6p3IZswqFKDgucNy4-eNTa9eAC50VZB9qhwRdx8DSqbnEP92fhcop7dTX3d1w_I5iovXXRuH8_uhuQpaUCmVElK8IAjFOOpVam3IChLqPWUkMF1UYkIEUWO-sjVJJBEReGu1RZzeKs4Fw4n9ocoU45L-EYYcmVcTpzrNBCZMpmikIKCbVBzqeQ9gR1w-5M31vVjOlqY07_GD9D2-GQQr2WyXPUqRY1XPiAX-nL5qA_AUzsqe4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA0ywcuLt4l3I_ja2qRp0vo2xDF1rRc22Ntoki8wlE5G--KvN2m3eQHBtxBICAnh5PvynXMQupQBY9Ro7dEQYo9FCrw45sSLGA2E5Ikh1PGd04z3hux-FI3mZPWaCwMAdfEZ-K5Z_-XrqapcqszecBGSkNsIfdUCf0QautYypWIjFSc8uYYu5kqaVy-PXtrJnOKIq-KizF_M8MNLpYaS7hbKFotoKkhe_aqUvvr4pc_471Vuo_YXaw8_LfFoB61AsYs2vwkO7qHnhpdbc5uwy5PDDKe1jw8eNIY9OMdpXlSO71ATGLFzNSqvcQd3J-55ijtVObWvXDvC2ai9tdGwezu46XlzUwVvQgQvPQqgjDA01jwOFShiEqI1UYQRqVgEnCWB0RajogTyIFehiYWWNEjyMGTGBjf7qFVMCzhAmIdCGZkYmkvGEqETQSCGiGgn6JNzfYjabnfG741uxnixMUd_9J-j9d4g7Y_7d9nDMdpwB-ayt5SfoFY5q-DUwn8pz-pD_wRahq03
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+RO-MAN&rft.atitle=Identifying+Worker+Motion+Through+a+Manufacturing+Plant%3A+A+Finite+Automaton+Model&rft.au=Yang%2C+Shaoze&rft.au=Bhat%2C+Shreyas&rft.au=Ren%2C+Yutong&rft.au=Pridham%2C+Paul&rft.date=2024-08-26&rft.pub=IEEE&rft.eissn=1944-9437&rft.spage=1970&rft.epage=1977&rft_id=info:doi/10.1109%2FRO-MAN60168.2024.10731360&rft.externalDocID=10731360