Machine Learning Basics

This chapter presents the most frequently used machine learning algorithms, including clustering, Bayes probabilistic models, Markov models, and decision trees. A major focus of machine learning research is to automatically induce models, such as rules and patterns, from the training data it analyze...

Full description

Saved in:
Bibliographic Details
Published inIntelligent Sensor Networks pp. 3 - 29
Main Authors Kapitanova, Krasimira, Son, Sang H.
Format Book Chapter
LanguageEnglish
Published CRC Press 2013
Edition1
Subjects
Online AccessGet full text
ISBN1138199745
9781439892817
1439892814
9781138199743
DOI10.1201/b14300-2

Cover

Abstract This chapter presents the most frequently used machine learning algorithms, including clustering, Bayes probabilistic models, Markov models, and decision trees. A major focus of machine learning research is to automatically induce models, such as rules and patterns, from the training data it analyzes. The most frequently used supervised machine learning algorithms include support vector machines, naive Bayes classifiers, decision trees, hidden Markov models, conditional random field, and k-nearest neighbor algorithms. The semi-Markov conditional random fields (SMCRFs) inherits features from both semi-Markov models and Conditional random fields as follows: Hierarchical SMCRFs were used in an activity recognition application on a small laboratory dataset from the domain of video surveillance. In the rest of this section, we describe some of the most commonly used unsupervised learning algorithms. Typical cluster models include the following: We discuss in more detail two of the most common clustering algorithms used in sensor network applications: k-means clustering and density-based spatial clustering for applications with noise clustering.
AbstractList This chapter presents the most frequently used machine learning algorithms, including clustering, Bayes probabilistic models, Markov models, and decision trees. A major focus of machine learning research is to automatically induce models, such as rules and patterns, from the training data it analyzes. The most frequently used supervised machine learning algorithms include support vector machines, naive Bayes classifiers, decision trees, hidden Markov models, conditional random field, and k-nearest neighbor algorithms. The semi-Markov conditional random fields (SMCRFs) inherits features from both semi-Markov models and Conditional random fields as follows: Hierarchical SMCRFs were used in an activity recognition application on a small laboratory dataset from the domain of video surveillance. In the rest of this section, we describe some of the most commonly used unsupervised learning algorithms. Typical cluster models include the following: We discuss in more detail two of the most common clustering algorithms used in sensor network applications: k-means clustering and density-based spatial clustering for applications with noise clustering.
Author Kapitanova, Krasimira
Son, Sang H.
Author_xml – sequence: 1
  givenname: Krasimira
  surname: Kapitanova
  fullname: Kapitanova, Krasimira
– sequence: 2
  givenname: Sang H.
  surname: Son
  fullname: Son, Sang H.
BookMark eNotjz1LBDEUACMq6J0Ldrb3B1bzks0l6dTDL1ix0Tq8ZF80uCaQHIr_XuWshmkGZsEOcsnE2CnwcxAcLjwMkvNe7LHOavMr1lhhxLDPFgDSgLV6UEesay15rqQS3Ch7zM4eMbylTKuRsOaUX1fX2FJoJ-ww4tyo--eSvdzePG_u-_Hp7mFzNfYJ9HrbCw86GBUHZUESTWQAlNd6WpMPmoQO0coBrBYG0SofUaAHoygGmgaFcskud92UY6kf-FXqPLktfs-lxoo5pOZLeW8OuPv7dLtPJ9wn1ZZKFvIHjJtJlg
ContentType Book Chapter
Copyright 2013 by Taylor & Francis Group, LLC
Copyright_xml – notice: 2013 by Taylor & Francis Group, LLC
DOI 10.1201/b14300-2
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Machine Learning Basics
EISBN 9781439892824
1466589159
9780429066962
9781466589155
0429066961
1439892822
9781466589148
1466589140
Edition 1
Editor Hao, Qi
Hu, Fei
Editor_xml – sequence: 1
  givenname: Fei
  surname: Hu
  fullname: Hu, Fei
– sequence: 2
  givenname: Qi
  surname: Hao
  fullname: Hao, Qi
EndPage 29
ExternalDocumentID 10_1201_b14300_2_version2
GroupedDBID 089
20A
38.
5~G
A4J
AABBV
AALIM
ABEQL
ACBYE
ADTEY
ADYHE
AFWCW
AFXGA
AGOQD
AGWHU
AHEBD
AHTWU
AKSCQ
ALKVF
ALMA_UNASSIGNED_HOLDINGS
ALYTH
ATPON
AZZ
BBABE
BMO
BQVRA
CZZ
EBATF
EIXGO
GEO
INALI
JG1
JJU
JTX
MYL
NEQ
OHILO
OODEK
OXWLL
TTQNR
WZT
ID FETCH-LOGICAL-i176t-2b17c85f45913eede8115b77d6ebc7e27cf93419728aa95bfa2ab185efced45a3
ISBN 1138199745
9781439892817
1439892814
9781138199743
IngestDate Fri Mar 28 04:24:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Activity Recognition
Naive Bayes Classifiers
Input Instance
WSN Application
Bayesian Network
CRF Model
Sensor Nodes
HMM
Unsupervised Learning Algorithms
HSMM
Sensor Network Applications
Orienting Subsystem
Dynamic Bayesian Network
Learning Algorithms
Semi-supervised Learning
Attentional Subsystem
Unlabeled Data
Sensor Network
CRF
Conditional Probability Distribution
Static Bayesian Network
Cognitive Wireless Sensor Networks
Machine Learning Algorithms
Van Kasteren
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i176t-2b17c85f45913eede8115b77d6ebc7e27cf93419728aa95bfa2ab185efced45a3
OpenAccessLink https://api.taylorfrancis.com/content/chapters/oa-edit/download?identifierName=doi&identifierValue=10.1201/b14300-2&type=chapterpdf
PageCount 27
ParticipantIDs informaworld_taylorfrancisbooks_10_1201_b14300_2_version2
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationSubtitle The Integration of Sensor Networks, Signal Processing and Machine Learning
PublicationTitle Intelligent Sensor Networks
PublicationYear 2013
Publisher CRC Press
Publisher_xml – name: CRC Press
SSID ssib053520859
ssib036837809
ssj0000856314
ssib056783830
ssib027107258
ssib058156596
Score 1.4313239
Snippet This chapter presents the most frequently used machine learning algorithms, including clustering, Bayes probabilistic models, Markov models, and decision...
SourceID informaworld
SourceType Publisher
StartPage 3
Title Machine Learning Basics
URI https://www.taylorfrancis.com/books/9780429066962/chapters/10.1201/b14300-2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuNAEG1BuMBcgGEZNuXADZmJe3G7jxCBIlBAmoDEzerNKEg4EjFzmK-n2u01MAfgYnmXy6-XquqqVwgda8YUs2CdmDg1AaVkEAgbhoEyMHlySRTRzqE_volG9_TqgT00NduK7JJcnep_H-aVfAVVOAe4uizZTyBbvxROwD7gC1tAGLYLym_XzVqHC3oyzRx6fDafFdm7Ls6qWZ-RriaIK3vq-7OcT5-nL_VAPPEr7hOZPZ6MTtuNZ1yEWNqKffXx5Bwe1R0XgSvX0HERDP8MOwEd3nYMQ2esgTlBWuMXaU2E3hPxbojFBbW_Aj1rMCgzF7uE1c6sgJsSf0uCk7_e8wcT5TKPaQ-tnF1Mrm-rXo9Bx-G4WZslkeO4b0jFHP-MY2Grj2F6BbO6HmWY47thJWngk4-8i0hRz6sWkRUpfUTEAschLZm-avkr5q_yOi85ikGG35WYC0S2LRXkbh39cGkpfZcvAr9hAy3ZbBOttegkf6KdErZ-BVvfw7aF7i8v7oajoCx8EUxDHuUBViHXMUspEyEBJcbCxzLFuYms0txirlPhePg4jqUUTKUSSwWKl021NZRJso162Syzu6gP5ojlKpKpYYqCsSo12CkRNjQWRkSG_EKiLViSF36i1Bd1cW17nvwXz71vPLuPVpuWeoB6-curPQT1LldHZft4A_tTQpQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Intelligent+Sensor+Networks&rft.au=Kapitanova%2C+Krasimira&rft.au=Son%2C+Sang+H.&rft.atitle=Machine+Learning+Basics&rft.date=2013-01-01&rft.pub=CRC+Press&rft.isbn=9781138199743&rft.spage=3&rft.epage=29&rft_id=info:doi/10.1201%2Fb14300-2&rft.externalDocID=10_1201_b14300_2_version2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/sc.gif&client=summon&freeimage=true