Machine Learning Basics
This chapter presents the most frequently used machine learning algorithms, including clustering, Bayes probabilistic models, Markov models, and decision trees. A major focus of machine learning research is to automatically induce models, such as rules and patterns, from the training data it analyze...
Saved in:
Published in | Intelligent Sensor Networks pp. 3 - 29 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
CRC Press
2013
|
Edition | 1 |
Subjects | |
Online Access | Get full text |
ISBN | 1138199745 9781439892817 1439892814 9781138199743 |
DOI | 10.1201/b14300-2 |
Cover
Abstract | This chapter presents the most frequently used machine learning algorithms, including clustering, Bayes probabilistic models, Markov models, and decision trees. A major focus of machine learning research is to automatically induce models, such as rules and patterns, from the training data it analyzes. The most frequently used supervised machine learning algorithms include support vector machines, naive Bayes classifiers, decision trees, hidden Markov models, conditional random field, and k-nearest neighbor algorithms. The semi-Markov conditional random fields (SMCRFs) inherits features from both semi-Markov models and Conditional random fields as follows: Hierarchical SMCRFs were used in an activity recognition application on a small laboratory dataset from the domain of video surveillance. In the rest of this section, we describe some of the most commonly used unsupervised learning algorithms. Typical cluster models include the following: We discuss in more detail two of the most common clustering algorithms used in sensor network applications: k-means clustering and density-based spatial clustering for applications with noise clustering. |
---|---|
AbstractList | This chapter presents the most frequently used machine learning algorithms, including clustering, Bayes probabilistic models, Markov models, and decision trees. A major focus of machine learning research is to automatically induce models, such as rules and patterns, from the training data it analyzes. The most frequently used supervised machine learning algorithms include support vector machines, naive Bayes classifiers, decision trees, hidden Markov models, conditional random field, and k-nearest neighbor algorithms. The semi-Markov conditional random fields (SMCRFs) inherits features from both semi-Markov models and Conditional random fields as follows: Hierarchical SMCRFs were used in an activity recognition application on a small laboratory dataset from the domain of video surveillance. In the rest of this section, we describe some of the most commonly used unsupervised learning algorithms. Typical cluster models include the following: We discuss in more detail two of the most common clustering algorithms used in sensor network applications: k-means clustering and density-based spatial clustering for applications with noise clustering. |
Author | Kapitanova, Krasimira Son, Sang H. |
Author_xml | – sequence: 1 givenname: Krasimira surname: Kapitanova fullname: Kapitanova, Krasimira – sequence: 2 givenname: Sang H. surname: Son fullname: Son, Sang H. |
BookMark | eNotjz1LBDEUACMq6J0Ldrb3B1bzks0l6dTDL1ix0Tq8ZF80uCaQHIr_XuWshmkGZsEOcsnE2CnwcxAcLjwMkvNe7LHOavMr1lhhxLDPFgDSgLV6UEesay15rqQS3Ch7zM4eMbylTKuRsOaUX1fX2FJoJ-ww4tyo--eSvdzePG_u-_Hp7mFzNfYJ9HrbCw86GBUHZUESTWQAlNd6WpMPmoQO0coBrBYG0SofUaAHoygGmgaFcskud92UY6kf-FXqPLktfs-lxoo5pOZLeW8OuPv7dLtPJ9wn1ZZKFvIHjJtJlg |
ContentType | Book Chapter |
Copyright | 2013 by Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2013 by Taylor & Francis Group, LLC |
DOI | 10.1201/b14300-2 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Machine Learning Basics |
EISBN | 9781439892824 1466589159 9780429066962 9781466589155 0429066961 1439892822 9781466589148 1466589140 |
Edition | 1 |
Editor | Hao, Qi Hu, Fei |
Editor_xml | – sequence: 1 givenname: Fei surname: Hu fullname: Hu, Fei – sequence: 2 givenname: Qi surname: Hao fullname: Hao, Qi |
EndPage | 29 |
ExternalDocumentID | 10_1201_b14300_2_version2 |
GroupedDBID | 089 20A 38. 5~G A4J AABBV AALIM ABEQL ACBYE ADTEY ADYHE AFWCW AFXGA AGOQD AGWHU AHEBD AHTWU AKSCQ ALKVF ALMA_UNASSIGNED_HOLDINGS ALYTH ATPON AZZ BBABE BMO BQVRA CZZ EBATF EIXGO GEO INALI JG1 JJU JTX MYL NEQ OHILO OODEK OXWLL TTQNR WZT |
ID | FETCH-LOGICAL-i176t-2b17c85f45913eede8115b77d6ebc7e27cf93419728aa95bfa2ab185efced45a3 |
ISBN | 1138199745 9781439892817 1439892814 9781138199743 |
IngestDate | Fri Mar 28 04:24:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Activity Recognition Naive Bayes Classifiers Input Instance WSN Application Bayesian Network CRF Model Sensor Nodes HMM Unsupervised Learning Algorithms HSMM Sensor Network Applications Orienting Subsystem Dynamic Bayesian Network Learning Algorithms Semi-supervised Learning Attentional Subsystem Unlabeled Data Sensor Network CRF Conditional Probability Distribution Static Bayesian Network Cognitive Wireless Sensor Networks Machine Learning Algorithms Van Kasteren |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-i176t-2b17c85f45913eede8115b77d6ebc7e27cf93419728aa95bfa2ab185efced45a3 |
OpenAccessLink | https://api.taylorfrancis.com/content/chapters/oa-edit/download?identifierName=doi&identifierValue=10.1201/b14300-2&type=chapterpdf |
PageCount | 27 |
ParticipantIDs | informaworld_taylorfrancisbooks_10_1201_b14300_2_version2 |
PublicationCentury | 2000 |
PublicationDate | 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationSubtitle | The Integration of Sensor Networks, Signal Processing and Machine Learning |
PublicationTitle | Intelligent Sensor Networks |
PublicationYear | 2013 |
Publisher | CRC Press |
Publisher_xml | – name: CRC Press |
SSID | ssib053520859 ssib036837809 ssj0000856314 ssib056783830 ssib027107258 ssib058156596 |
Score | 1.4313239 |
Snippet | This chapter presents the most frequently used machine learning algorithms, including clustering, Bayes probabilistic models, Markov models, and decision... |
SourceID | informaworld |
SourceType | Publisher |
StartPage | 3 |
Title | Machine Learning Basics |
URI | https://www.taylorfrancis.com/books/9780429066962/chapters/10.1201/b14300-2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuNAEG1BuMBcgGEZNuXADZmJe3G7jxCBIlBAmoDEzerNKEg4EjFzmK-n2u01MAfgYnmXy6-XquqqVwgda8YUs2CdmDg1AaVkEAgbhoEyMHlySRTRzqE_volG9_TqgT00NduK7JJcnep_H-aVfAVVOAe4uizZTyBbvxROwD7gC1tAGLYLym_XzVqHC3oyzRx6fDafFdm7Ls6qWZ-RriaIK3vq-7OcT5-nL_VAPPEr7hOZPZ6MTtuNZ1yEWNqKffXx5Bwe1R0XgSvX0HERDP8MOwEd3nYMQ2esgTlBWuMXaU2E3hPxbojFBbW_Aj1rMCgzF7uE1c6sgJsSf0uCk7_e8wcT5TKPaQ-tnF1Mrm-rXo9Bx-G4WZslkeO4b0jFHP-MY2Grj2F6BbO6HmWY47thJWngk4-8i0hRz6sWkRUpfUTEAschLZm-avkr5q_yOi85ikGG35WYC0S2LRXkbh39cGkpfZcvAr9hAy3ZbBOttegkf6KdErZ-BVvfw7aF7i8v7oajoCx8EUxDHuUBViHXMUspEyEBJcbCxzLFuYms0txirlPhePg4jqUUTKUSSwWKl021NZRJso162Syzu6gP5ojlKpKpYYqCsSo12CkRNjQWRkSG_EKiLViSF36i1Bd1cW17nvwXz71vPLuPVpuWeoB6-curPQT1LldHZft4A_tTQpQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Intelligent+Sensor+Networks&rft.au=Kapitanova%2C+Krasimira&rft.au=Son%2C+Sang+H.&rft.atitle=Machine+Learning+Basics&rft.date=2013-01-01&rft.pub=CRC+Press&rft.isbn=9781138199743&rft.spage=3&rft.epage=29&rft_id=info:doi/10.1201%2Fb14300-2&rft.externalDocID=10_1201_b14300_2_version2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/sc.gif&client=summon&freeimage=true |