Interpretable Attributed Scattering Center Extracted via Deep Unfolding
Most existing sparse representation based approaches for attributed scattering center (ASC) extraction adopt traditional iterative optimization algorithms, which suffer from lengthy computation time and limited precision. This paper presents a solution by introducing an interpretable network that ca...
Saved in:
Published in | IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 2004 - 2008 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
07.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2153-7003 |
DOI | 10.1109/IGARSS53475.2024.10641709 |
Cover
Abstract | Most existing sparse representation based approaches for attributed scattering center (ASC) extraction adopt traditional iterative optimization algorithms, which suffer from lengthy computation time and limited precision. This paper presents a solution by introducing an interpretable network that can effectively and rapidly extract ASC via deep unfolding. Initially, we create a dictionary containing reliable prior knowledge and apply it to iterative shrinkage-thresholding algorithm (ISTA). Then, we unfold ISTA to a neural network, employing it to autonomously and precisely optimize the hyperparameters. The interpretability in physics is retained by applying a dictionary with physical meaning. The experiments are conducted on multiple test sets with diverse data distribution and demonstrate the superior performance and generalizability of our method. |
---|---|
AbstractList | Most existing sparse representation based approaches for attributed scattering center (ASC) extraction adopt traditional iterative optimization algorithms, which suffer from lengthy computation time and limited precision. This paper presents a solution by introducing an interpretable network that can effectively and rapidly extract ASC via deep unfolding. Initially, we create a dictionary containing reliable prior knowledge and apply it to iterative shrinkage-thresholding algorithm (ISTA). Then, we unfold ISTA to a neural network, employing it to autonomously and precisely optimize the hyperparameters. The interpretability in physics is retained by applying a dictionary with physical meaning. The experiments are conducted on multiple test sets with diverse data distribution and demonstrate the superior performance and generalizability of our method. |
Author | Yang, Haodong Huang, Zhongling Zhang, Zhe |
Author_xml | – sequence: 1 givenname: Haodong surname: Yang fullname: Yang, Haodong organization: Northwestern Polytechnical University,School of Automation – sequence: 2 givenname: Zhongling surname: Huang fullname: Huang, Zhongling organization: Northwestern Polytechnical University,School of Automation – sequence: 3 givenname: Zhe surname: Zhang fullname: Zhang, Zhe organization: Suzhou Aerospace Information Research Institute |
BookMark | eNo1j91Kw0AUhFdRsK19Ay_iAySe3bO_lyHWGCgIxl6XTXIqkZiGZBV9e1PUqxmYj2FmyS76Y0-M3XJIOAd3V-Tpc1kqlEYlAoRMOGjJDbgztnbGWVSAGlCoc7YQXGFsAPCKLafpbTZWACxYXvSBxmGk4KuOojSEsa0-AjVRWfswR23_GmV0gqLNVxh9fco-Wx_dEw3Rrj8cu2ZmrtnlwXcTrf90xXYPm5fsMd4-5UWWbuOWGx1iYZE3TnOvHEonbIPcmbpGDlLXMK8yDZpKW1FVmhSC05ZbNVthpWsqjSt289vbEtF-GNt3P37v_4_jDzO-TiM |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS53475.2024.10641709 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 9798350360325 |
EISSN | 2153-7003 |
EndPage | 2008 |
ExternalDocumentID | 10641709 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i176t-2831d961a5934928d3197cc31046c00037d37b682bb6e5309681856e52849db63 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:02:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-2831d961a5934928d3197cc31046c00037d37b682bb6e5309681856e52849db63 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10641709 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-7 |
PublicationDateYYYYMMDD | 2024-07-07 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-7 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Geoscience and Remote Sensing Symposium proceedings |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 1.8850946 |
Snippet | Most existing sparse representation based approaches for attributed scattering center (ASC) extraction adopt traditional iterative optimization algorithms,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2004 |
SubjectTerms | Attributed Scattering Center Deep Unfolding Dictionaries Geoscience and remote sensing Iterative algorithms Neural networks Reliability Scattering Sparse approximation Sparse Representation |
Title | Interpretable Attributed Scattering Center Extracted via Deep Unfolding |
URI | https://ieeexplore.ieee.org/document/10641709 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA5aUHzyqngTwdeszebafSzaQ8Ei1kLfSq6CKG0pW1F_vZNs16Ig-BYCwy65vkxmvm8QuoRj0Rra0EToTBOuqSQ655Kk1IhxagSTkR5935PdAb8biuGSrB65MN77mHzmk9CMsXw3tYvwVAY7XHKqAl1vHdZZSdaqjl0GUNbYRBdLEc2r207zsd8XjCsBXmDKk8r4RxmViCLtbdSrvl8mj7wki8Ik9vOXNOO_f3AH1VeEPfzwDUW7aM1P9tBGJ1bt_dhHnVVqoXn1uFmUZa68w30b9TXBCId3Xj_HrfciKjg7_Pas8Y33MzyARRhjVHU0aLeerrtkWUGBPFMlCwJ3B-pySbXIgwph5mDDKWtZCOzaqD3jmDIyS42RXjBwZwJ-QxNAK3dGsgNUm0wn_hBhNc618hJMtOAmB7dEKQ3wn2kzNkK5I1QP4zGalSIZo2oojv_oP0FbYVpi5qs6RbVivvBngO-FOY_z-gVhHqIy |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB5E8Xjyqngbwdddu7s5dh-L9tK2iG2hbyXZpFCUtpStqL_eSbZrURB8C4GBkOvLZOb7BuAGr8VUBWXpMRlLj8qAezKh3AsDxUahYhF39Oh2hzf69GHABkuyuuPCGGNc8pnxbdPF8vU0XdivMjzhnAbC0vU2EPgpy-laxcUbIZiVt-B6KaN526xXnrtdFlHB0A8MqV-Y_yik4nCktgudYgR5-siLv8iUn37-Emf89xD3oLSi7JGnbzDahzUzOYDNuqvb-3EI9VVyoXo1pJLlha6MJt3UKWyiEbE_vWZOqu-Z03DW5G0syb0xM9LHbeiiVCXo16q9u4a3rKHgjQPBMw9fD4FOeCBZYnUIY41HTqRpZEO7qVOf0ZFQPA6V4oZF6NBYBMcmwlaiFY-OYH0ynZhjIGKUSGE4mkhGVYKOiRASHwCxVCPFhD6Bkp2P4SyXyRgWU3H6R_8VbDd67daw1ew8nsGOXSKXByvOYT2bL8wFon2mLt0afwETNqV_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Interpretable+Attributed+Scattering+Center+Extracted+via+Deep+Unfolding&rft.au=Yang%2C+Haodong&rft.au=Huang%2C+Zhongling&rft.au=Zhang%2C+Zhe&rft.date=2024-07-07&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=2004&rft.epage=2008&rft_id=info:doi/10.1109%2FIGARSS53475.2024.10641709&rft.externalDocID=10641709 |