Interpretable Attributed Scattering Center Extracted via Deep Unfolding

Most existing sparse representation based approaches for attributed scattering center (ASC) extraction adopt traditional iterative optimization algorithms, which suffer from lengthy computation time and limited precision. This paper presents a solution by introducing an interpretable network that ca...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Geoscience and Remote Sensing Symposium proceedings pp. 2004 - 2008
Main Authors Yang, Haodong, Huang, Zhongling, Zhang, Zhe
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.07.2024
Subjects
Online AccessGet full text
ISSN2153-7003
DOI10.1109/IGARSS53475.2024.10641709

Cover

Abstract Most existing sparse representation based approaches for attributed scattering center (ASC) extraction adopt traditional iterative optimization algorithms, which suffer from lengthy computation time and limited precision. This paper presents a solution by introducing an interpretable network that can effectively and rapidly extract ASC via deep unfolding. Initially, we create a dictionary containing reliable prior knowledge and apply it to iterative shrinkage-thresholding algorithm (ISTA). Then, we unfold ISTA to a neural network, employing it to autonomously and precisely optimize the hyperparameters. The interpretability in physics is retained by applying a dictionary with physical meaning. The experiments are conducted on multiple test sets with diverse data distribution and demonstrate the superior performance and generalizability of our method.
AbstractList Most existing sparse representation based approaches for attributed scattering center (ASC) extraction adopt traditional iterative optimization algorithms, which suffer from lengthy computation time and limited precision. This paper presents a solution by introducing an interpretable network that can effectively and rapidly extract ASC via deep unfolding. Initially, we create a dictionary containing reliable prior knowledge and apply it to iterative shrinkage-thresholding algorithm (ISTA). Then, we unfold ISTA to a neural network, employing it to autonomously and precisely optimize the hyperparameters. The interpretability in physics is retained by applying a dictionary with physical meaning. The experiments are conducted on multiple test sets with diverse data distribution and demonstrate the superior performance and generalizability of our method.
Author Yang, Haodong
Huang, Zhongling
Zhang, Zhe
Author_xml – sequence: 1
  givenname: Haodong
  surname: Yang
  fullname: Yang, Haodong
  organization: Northwestern Polytechnical University,School of Automation
– sequence: 2
  givenname: Zhongling
  surname: Huang
  fullname: Huang, Zhongling
  organization: Northwestern Polytechnical University,School of Automation
– sequence: 3
  givenname: Zhe
  surname: Zhang
  fullname: Zhang, Zhe
  organization: Suzhou Aerospace Information Research Institute
BookMark eNo1j91Kw0AUhFdRsK19Ay_iAySe3bO_lyHWGCgIxl6XTXIqkZiGZBV9e1PUqxmYj2FmyS76Y0-M3XJIOAd3V-Tpc1kqlEYlAoRMOGjJDbgztnbGWVSAGlCoc7YQXGFsAPCKLafpbTZWACxYXvSBxmGk4KuOojSEsa0-AjVRWfswR23_GmV0gqLNVxh9fco-Wx_dEw3Rrj8cu2ZmrtnlwXcTrf90xXYPm5fsMd4-5UWWbuOWGx1iYZE3TnOvHEonbIPcmbpGDlLXMK8yDZpKW1FVmhSC05ZbNVthpWsqjSt289vbEtF-GNt3P37v_4_jDzO-TiM
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS53475.2024.10641709
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9798350360325
EISSN 2153-7003
EndPage 2008
ExternalDocumentID 10641709
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-2831d961a5934928d3197cc31046c00037d37b682bb6e5309681856e52849db63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:02:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-2831d961a5934928d3197cc31046c00037d37b682bb6e5309681856e52849db63
PageCount 5
ParticipantIDs ieee_primary_10641709
PublicationCentury 2000
PublicationDate 2024-July-7
PublicationDateYYYYMMDD 2024-07-07
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-7
  day: 07
PublicationDecade 2020
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.8850946
Snippet Most existing sparse representation based approaches for attributed scattering center (ASC) extraction adopt traditional iterative optimization algorithms,...
SourceID ieee
SourceType Publisher
StartPage 2004
SubjectTerms Attributed Scattering Center
Deep Unfolding
Dictionaries
Geoscience and remote sensing
Iterative algorithms
Neural networks
Reliability
Scattering
Sparse approximation
Sparse Representation
Title Interpretable Attributed Scattering Center Extracted via Deep Unfolding
URI https://ieeexplore.ieee.org/document/10641709
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA5aUHzyqngTwdeszebafSzaQ8Ei1kLfSq6CKG0pW1F_vZNs16Ig-BYCwy65vkxmvm8QuoRj0Rra0EToTBOuqSQ655Kk1IhxagSTkR5935PdAb8biuGSrB65MN77mHzmk9CMsXw3tYvwVAY7XHKqAl1vHdZZSdaqjl0GUNbYRBdLEc2r207zsd8XjCsBXmDKk8r4RxmViCLtbdSrvl8mj7wki8Ik9vOXNOO_f3AH1VeEPfzwDUW7aM1P9tBGJ1bt_dhHnVVqoXn1uFmUZa68w30b9TXBCId3Xj_HrfciKjg7_Pas8Y33MzyARRhjVHU0aLeerrtkWUGBPFMlCwJ3B-pySbXIgwph5mDDKWtZCOzaqD3jmDIyS42RXjBwZwJ-QxNAK3dGsgNUm0wn_hBhNc618hJMtOAmB7dEKQ3wn2kzNkK5I1QP4zGalSIZo2oojv_oP0FbYVpi5qs6RbVivvBngO-FOY_z-gVhHqIy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB5E8Xjyqngbwdddu7s5dh-L9tK2iG2hbyXZpFCUtpStqL_eSbZrURB8C4GBkOvLZOb7BuAGr8VUBWXpMRlLj8qAezKh3AsDxUahYhF39Oh2hzf69GHABkuyuuPCGGNc8pnxbdPF8vU0XdivMjzhnAbC0vU2EPgpy-laxcUbIZiVt-B6KaN526xXnrtdFlHB0A8MqV-Y_yik4nCktgudYgR5-siLv8iUn37-Emf89xD3oLSi7JGnbzDahzUzOYDNuqvb-3EI9VVyoXo1pJLlha6MJt3UKWyiEbE_vWZOqu-Z03DW5G0syb0xM9LHbeiiVCXo16q9u4a3rKHgjQPBMw9fD4FOeCBZYnUIY41HTqRpZEO7qVOf0ZFQPA6V4oZF6NBYBMcmwlaiFY-OYH0ynZhjIGKUSGE4mkhGVYKOiRASHwCxVCPFhD6Bkp2P4SyXyRgWU3H6R_8VbDd67daw1ew8nsGOXSKXByvOYT2bL8wFon2mLt0afwETNqV_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Interpretable+Attributed+Scattering+Center+Extracted+via+Deep+Unfolding&rft.au=Yang%2C+Haodong&rft.au=Huang%2C+Zhongling&rft.au=Zhang%2C+Zhe&rft.date=2024-07-07&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=2004&rft.epage=2008&rft_id=info:doi/10.1109%2FIGARSS53475.2024.10641709&rft.externalDocID=10641709