SSR-Encoder: Encoding Selective Subject Representation for Subject-Driven Generation
Recent advancements in subject-driven image generation have led to zero-shot generation, yet precise selection and focus on crucial subject representations remain challenging. Addressing this, we introduce the SSR-Encoder, a novel architecture designed for selectively capturing any subject from sing...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 8069 - 8078 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advancements in subject-driven image generation have led to zero-shot generation, yet precise selection and focus on crucial subject representations remain challenging. Addressing this, we introduce the SSR-Encoder, a novel architecture designed for selectively capturing any subject from single or multiple reference images. It responds to various query modalities including text and masks, without necessitating test-time fine-tuning. The SSR-Encoder combines a Token-to-Patch Aligner that aligns query inputs with image patches and a Detail-Preserving Subject Encoder for extracting and preserving fine features of the subjects, thereby generating subject embeddings. These embeddings, used in conjunction with original text embeddings, condition the generation process. Characterized by its model generalizability and efficiency, the SSR-Encoder adapts to a range of custom models and control modules. Enhanced by the Embedding Consistency Regularization Loss for improved training, our extensive experiments demonstrate its effectiveness in versatile and high-quality image generation, indicating its broad applicability. Project page: ssr-encoder.github.io |
---|---|
AbstractList | Recent advancements in subject-driven image generation have led to zero-shot generation, yet precise selection and focus on crucial subject representations remain challenging. Addressing this, we introduce the SSR-Encoder, a novel architecture designed for selectively capturing any subject from single or multiple reference images. It responds to various query modalities including text and masks, without necessitating test-time fine-tuning. The SSR-Encoder combines a Token-to-Patch Aligner that aligns query inputs with image patches and a Detail-Preserving Subject Encoder for extracting and preserving fine features of the subjects, thereby generating subject embeddings. These embeddings, used in conjunction with original text embeddings, condition the generation process. Characterized by its model generalizability and efficiency, the SSR-Encoder adapts to a range of custom models and control modules. Enhanced by the Embedding Consistency Regularization Loss for improved training, our extensive experiments demonstrate its effectiveness in versatile and high-quality image generation, indicating its broad applicability. Project page: ssr-encoder.github.io |
Author | Song, Yiren Tang, Xu Yu, Jinpeng Hu, Yao Li, Huaxia Zhang, Yuxuan Liu, Jiaming Tang, Hao Wang, Rui Pan, Han Jing, Zhongliang |
Author_xml | – sequence: 1 givenname: Yuxuan surname: Zhang fullname: Zhang, Yuxuan email: zyx153@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 2 givenname: Yiren surname: Song fullname: Song, Yiren email: yiren@nus.edu.sg organization: National University of Singapore – sequence: 3 givenname: Jiaming surname: Liu fullname: Liu, Jiaming email: jmliu1217@gmail.com organization: Xiaohongshu Inc – sequence: 4 givenname: Rui surname: Wang fullname: Wang, Rui email: wr_bupt@bupt.edu.cn organization: Beijing University of Posts and Telecommunications – sequence: 5 givenname: Jinpeng surname: Yu fullname: Yu, Jinpeng email: yujp1@shanghaitech.edu.cn organization: ShanghaiTech University – sequence: 6 givenname: Hao surname: Tang fullname: Tang, Hao email: haotang2@cmu.edu organization: Carnegie Mellon University – sequence: 7 givenname: Huaxia surname: Li fullname: Li, Huaxia email: xiahou@xiaohongshu.com organization: Xiaohongshu Inc – sequence: 8 givenname: Xu surname: Tang fullname: Tang, Xu email: tangshen@xiaohongshu.com organization: Xiaohongshu Inc – sequence: 9 givenname: Yao surname: Hu fullname: Hu, Yao email: yicheng@xiaohongshu.com organization: Xiaohongshu Inc – sequence: 10 givenname: Han surname: Pan fullname: Pan, Han email: hanpan@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 11 givenname: Zhongliang surname: Jing fullname: Jing, Zhongliang email: zljing@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BookMark | eNo1j11LwzAYhaMoOGf_wS7yB1rfJG0-vJO6TWGgtNPbkbZvJGOmI62C_94y9eoceB4OnGtyEfqAhCwYZIyBuS3fXqqCKyEyDjzPAJRiZyQxymhRgCgEgDwnMwZSpNIwc0WSYdgDgOCMSaNnZFvXVboMbd9hvKOn4sM7rfGA7ei_kNafzX6qtMJjxAHDaEffB-r6-I_ShziJga4xYDzRG3Lp7GHA5C_n5HW13JaP6eZ5_VTeb1LPlBxTznVjeN45I0Fa1wGKnLfKWWmbnIPVrUSmiw5zw7mw2hipJ6XhrUM9ITEni99dj4i7Y_QfNn7vpreFAqXFD30YU_A |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR52733.2024.00771 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9798350353006 |
EISSN | 1063-6919 |
EndPage | 8078 |
ExternalDocumentID | 10657078 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i176t-228b924df9606afd0e342c7fa6ab420a8c6e185de49223a89968e34b2cfe86e13 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:55:19 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-228b924df9606afd0e342c7fa6ab420a8c6e185de49223a89968e34b2cfe86e13 |
PageCount | 10 |
ParticipantIDs | ieee_primary_10657078 |
PublicationCentury | 2000 |
PublicationDate | 2024-June-16 |
PublicationDateYYYYMMDD | 2024-06-16 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.5165398 |
Snippet | Recent advancements in subject-driven image generation have led to zero-shot generation, yet precise selection and focus on crucial subject representations... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 8069 |
SubjectTerms | Adaptation models Computer vision Ecosystems Feature extraction Image coding Image synthesis Training |
Title | SSR-Encoder: Encoding Selective Subject Representation for Subject-Driven Generation |
URI | https://ieeexplore.ieee.org/document/10657078 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uTz7Ny8Q7efA1s03SJPV1bgzBMXaRvY20TUCETmb34q_3nLTbQBB8C02gJSHn1u_7DiEPEPSmmnvPtMwiJhNvWRpAjlmRyBxx7x7ZyK9jNVrIl2WybMjqgQvjnAvgM9fDYfiXX6zzLZbK4IYjUEObFmlB5laTtfYFFQGpjEpNQ4-Lo_Sx_zaZor6YgDSQB5HsQJQ_NFEJPmTYIePd22voyEdvW2W9_PuXMOO_P--EdA90PTrZO6JTcuTKM9Jp4kva3N6vczKfzaZsUCKLffNEwwDW01lohQNWj4IVwbIMnQZ4bMNKKinEtbsp9rxB80hrtWqc7ZLFcDDvj1jTVYG9x1pVjHOTQdJVeMxdrC8iJyTPtbfKZpJH1uTKgRMvnEwhdLCQjykDSzKee2dgSlyQdrku3SWhwnJf6NQLIWKp88Q4U0gskaBGjHH8inRxl1aftXDGardB1388vyHHeFKIxIrVLWlXm627A59fZffhrH8ANFCq2w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1JS8NAFH7UetBTXSruzkGPqclkkkwET12odqF0kd5qlhkQIZU2RfS_-Ff8bb6ZpC0IHgvehswQmLzJ2-b73gO4RqfX96iUhsdC02CODAxfgxzD2GGRwr1LxUbudN3miD2OnXEBvlZcGCGEBp-Jihrqu_x4Gi1Uqgz_cAXU8HiOoWyJj3eM0Ob3DzUU5w2ljfqw2jTyJgLGi-W5qUEpDzHGiKVy1QMZm8JmNPJk4AYho2bAI1egzYoF89FSBhh-uByXhDSSguOUje_dgm10NBya0cNWKRwbgyfX5zkhzzL92-pTr68qmtkYeFJdlltT89dtW7TVapTge7nfDKzyWlmkYSX6_FUK8t9-kD0orwmJpLcytftQEMkBlHIPmuT6aX4Iw8Ggb9QTxdOf3RE9wPVkoJv9oF4nqCdV4on0NQA4510lBD335ZRRmykDQLJ63Gq2DKON7PAIisk0EcdA7IDK2POlbdsW8yKHCx4zlQRSVXC4oCdQVlKZvGWlQSZLgZz-8fwKdprDTnvSfui2zmBXnRKFO7Pccyims4W4QA8nDS_1OSPwvGk5_gBvhwhU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=SSR-Encoder%3A+Encoding+Selective+Subject+Representation+for+Subject-Driven+Generation&rft.au=Zhang%2C+Yuxuan&rft.au=Song%2C+Yiren&rft.au=Liu%2C+Jiaming&rft.au=Wang%2C+Rui&rft.date=2024-06-16&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=8069&rft.epage=8078&rft_id=info:doi/10.1109%2FCVPR52733.2024.00771&rft.externalDocID=10657078 |