TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers
Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is computationally demanding, and is often impractical to implement on small, resource-constrained robotic platforms. We present TinyMPC, a high-speed MPC sol...
Saved in:
Published in | 2024 IEEE International Conference on Robotics and Automation (ICRA) pp. 1 - 7 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
13.05.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICRA57147.2024.10610987 |
Cover
Abstract | Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is computationally demanding, and is often impractical to implement on small, resource-constrained robotic platforms. We present TinyMPC, a high-speed MPC solver with a low memory footprint targeting the microcontrollers common on small robots. Our approach is based on the alternating direction method of multipliers (ADMM) and leverages the structure of the MPC problem for efficiency. We demonstrate TinyMPC's effectiveness by bench-marking against the state-of-the-art solver OSQP, achieving nearly an order of magnitude speed increase, as well as through hardware experiments on a 27 gram quadrotor, demonstrating high-speed trajectory tracking and dynamic obstacle avoidance. TinyMPC is publicly available at https://tinympc.org. |
---|---|
AbstractList | Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is computationally demanding, and is often impractical to implement on small, resource-constrained robotic platforms. We present TinyMPC, a high-speed MPC solver with a low memory footprint targeting the microcontrollers common on small robots. Our approach is based on the alternating direction method of multipliers (ADMM) and leverages the structure of the MPC problem for efficiency. We demonstrate TinyMPC's effectiveness by bench-marking against the state-of-the-art solver OSQP, achieving nearly an order of magnitude speed increase, as well as through hardware experiments on a 27 gram quadrotor, demonstrating high-speed trajectory tracking and dynamic obstacle avoidance. TinyMPC is publicly available at https://tinympc.org. |
Author | Plancher, Brian Manchester, Zachary Nguyen, Khai Alavilli, Anoushka Schoedel, Sam |
Author_xml | – sequence: 1 givenname: Khai surname: Nguyen fullname: Nguyen, Khai email: xuankhan@andrew.cmu.edu organization: Carnegie Mellon University,Department of Mechanical Engineering,Pittsburgh,PA,15213 – sequence: 2 givenname: Sam surname: Schoedel fullname: Schoedel, Sam email: sschoede@andrew.cmu.edu organization: Carnegie Mellon University,Robotics Institute,Pittsburgh,PA,15213 – sequence: 3 givenname: Anoushka surname: Alavilli fullname: Alavilli, Anoushka email: apalavil@andrew.cmu.edu organization: Carnegie Mellon University,Department of Electrical & Computer Engineering,Pittsburgh,PA,15213 – sequence: 4 givenname: Brian surname: Plancher fullname: Plancher, Brian email: bplancher@barnard.edu organization: Columbia University,Barnard College,New York,NY,10027 – sequence: 5 givenname: Zachary surname: Manchester fullname: Manchester, Zachary email: zmanches@andrew.cmu.edu organization: Carnegie Mellon University,Robotics Institute,Pittsburgh,PA,15213 |
BookMark | eNo1j11LwzAYhSO4C537B4L9A61589Gk3o3gx2RlY8zrkaRvIVATSauwf29henXg4fBwzi25jikiIQ9AKwDaPG7MYS0VCFUxykQFtJ6pVldk1ahGc0m5FlKJG_J-DPHc7s1T0aYOh3KfsQt-Cj9YmBSnnIYixeKAY_rOHsuZjVO2IWJXtMHn5C-lAfN4Rxa9HUZc_eWSfLw8H81bud29bsx6WwZQ9VQCOuZqrmotwGmr5m3oFQL0ljuwXjMhdO8d9soL61jvsaFW-K7mGp2UfEnuL96AiKevHD5tPp_-L_JfCkhM2Q |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICRA57147.2024.10610987 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350384574 |
EndPage | 7 |
ExternalDocumentID | 10610987 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i176t-1eb2b6376841b8a7106ec7e11fa3b1ac82448fcbef7c4ab2fce90a4cd638eb553 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 14 05:40:32 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-1eb2b6376841b8a7106ec7e11fa3b1ac82448fcbef7c4ab2fce90a4cd638eb553 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10610987 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-13 |
PublicationDateYYYYMMDD | 2024-05-13 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE International Conference on Robotics and Automation (ICRA) |
PublicationTitleAbbrev | ICRA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9021674 |
Snippet | Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Collision avoidance Convex functions Hardware Microcontrollers Predictive control Robots Trajectory tracking |
Title | TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers |
URI | https://ieeexplore.ieee.org/document/10610987 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7TNW2Tdt6kOOZgY8gGu40kfYHh6GR0h_nX-5K2ioLgrYTSlpcm731533sfIQ9KgpU21CziyrLE1flg1CqZcPpvGDHY0Df1mUzlaJGMl2LZFKv7WhgA8OQzCNylz-UXW7N3R2V9B19CBMkd0sH_rC7WajhbON5_yV-fRMqTFGFflATt3T90U7zbGJ6QafvCmi3yFuwrHZiPX70Y__1Fp6T3XaFHZ1--54wcQXlOxvN1eZjM8kfqFM42bLZzWRi3n9G8ZqTTbUnbA3vmtDq9QgQUdOJ4eQ1tfYMRYY8shs_zfMQarQS25qmsGEeErGXs0mpcZwrjBgkmBc6tijVXJkM3nlmjwaYmUTqyBgahSkyB6w-0EPEF6ZbbEi4JjaJBIaw0iCzjREQKH2cytOpAZIXJTHFFes4Qq_e6HcaqtcH1H-M35NjNh0u58_iWdKvdHu7Qk1f63s_gJ9yHn7k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJve_CarmmTtPMmxbHNdQzZYLeRpAkMRzdGd9C_3pe0VRQEb6UNbXkh-d7L-977EHoQXBtuAolDIgymts4HvFaOmdV_A4_BBK6pTzbm_Rkdztm8LlZ3tTBaa0c-0769dLn8fK129qisY8OXAILkfXQAwE9ZVa5Vs7bgSWeQvj6xmNAYAr-Q-s34H8opDjh6x2jcfLLii7z5u1L66uNXN8Z__9MJan_X6HmTL_Q5RXu6OEPD6bJ4zybpo2c1zlZ4srV5GLujeWnFSffWhdcc2WOr1uk0InTuZZaZVxPXV-ATttGs9zxN-7hWS8BLEvMSE4iRJY9sYo3IRIDnwLWKNSFGRJIIlQCQJ0ZJbWJFhQyN0t1AUJXDCtSSsegctYp1oS-QF4bdnBmuILaMKAsFvE4lYNUuS3KVqPwSta0hFpuqIcaiscHVH_fv0WF_mo0Wo8H45Rod2bmxCXgS3aBWud3pW8D1Ut652fwEaKmjBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=TinyMPC%3A+Model-Predictive+Control+on+Resource-Constrained+Microcontrollers&rft.au=Nguyen%2C+Khai&rft.au=Schoedel%2C+Sam&rft.au=Alavilli%2C+Anoushka&rft.au=Plancher%2C+Brian&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICRA57147.2024.10610987&rft.externalDocID=10610987 |