TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers

Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is computationally demanding, and is often impractical to implement on small, resource-constrained robotic platforms. We present TinyMPC, a high-speed MPC sol...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Conference on Robotics and Automation (ICRA) pp. 1 - 7
Main Authors Nguyen, Khai, Schoedel, Sam, Alavilli, Anoushka, Plancher, Brian, Manchester, Zachary
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.05.2024
Subjects
Online AccessGet full text
DOI10.1109/ICRA57147.2024.10610987

Cover

Abstract Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is computationally demanding, and is often impractical to implement on small, resource-constrained robotic platforms. We present TinyMPC, a high-speed MPC solver with a low memory footprint targeting the microcontrollers common on small robots. Our approach is based on the alternating direction method of multipliers (ADMM) and leverages the structure of the MPC problem for efficiency. We demonstrate TinyMPC's effectiveness by bench-marking against the state-of-the-art solver OSQP, achieving nearly an order of magnitude speed increase, as well as through hardware experiments on a 27 gram quadrotor, demonstrating high-speed trajectory tracking and dynamic obstacle avoidance. TinyMPC is publicly available at https://tinympc.org.
AbstractList Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is computationally demanding, and is often impractical to implement on small, resource-constrained robotic platforms. We present TinyMPC, a high-speed MPC solver with a low memory footprint targeting the microcontrollers common on small robots. Our approach is based on the alternating direction method of multipliers (ADMM) and leverages the structure of the MPC problem for efficiency. We demonstrate TinyMPC's effectiveness by bench-marking against the state-of-the-art solver OSQP, achieving nearly an order of magnitude speed increase, as well as through hardware experiments on a 27 gram quadrotor, demonstrating high-speed trajectory tracking and dynamic obstacle avoidance. TinyMPC is publicly available at https://tinympc.org.
Author Plancher, Brian
Manchester, Zachary
Nguyen, Khai
Alavilli, Anoushka
Schoedel, Sam
Author_xml – sequence: 1
  givenname: Khai
  surname: Nguyen
  fullname: Nguyen, Khai
  email: xuankhan@andrew.cmu.edu
  organization: Carnegie Mellon University,Department of Mechanical Engineering,Pittsburgh,PA,15213
– sequence: 2
  givenname: Sam
  surname: Schoedel
  fullname: Schoedel, Sam
  email: sschoede@andrew.cmu.edu
  organization: Carnegie Mellon University,Robotics Institute,Pittsburgh,PA,15213
– sequence: 3
  givenname: Anoushka
  surname: Alavilli
  fullname: Alavilli, Anoushka
  email: apalavil@andrew.cmu.edu
  organization: Carnegie Mellon University,Department of Electrical & Computer Engineering,Pittsburgh,PA,15213
– sequence: 4
  givenname: Brian
  surname: Plancher
  fullname: Plancher, Brian
  email: bplancher@barnard.edu
  organization: Columbia University,Barnard College,New York,NY,10027
– sequence: 5
  givenname: Zachary
  surname: Manchester
  fullname: Manchester, Zachary
  email: zmanches@andrew.cmu.edu
  organization: Carnegie Mellon University,Robotics Institute,Pittsburgh,PA,15213
BookMark eNo1j11LwzAYhSO4C537B4L9A61589Gk3o3gx2RlY8zrkaRvIVATSauwf29henXg4fBwzi25jikiIQ9AKwDaPG7MYS0VCFUxykQFtJ6pVldk1ahGc0m5FlKJG_J-DPHc7s1T0aYOh3KfsQt-Cj9YmBSnnIYixeKAY_rOHsuZjVO2IWJXtMHn5C-lAfN4Rxa9HUZc_eWSfLw8H81bud29bsx6WwZQ9VQCOuZqrmotwGmr5m3oFQL0ljuwXjMhdO8d9soL61jvsaFW-K7mGp2UfEnuL96AiKevHD5tPp_-L_JfCkhM2Q
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA57147.2024.10610987
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350384574
EndPage 7
ExternalDocumentID 10610987
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i176t-1eb2b6376841b8a7106ec7e11fa3b1ac82448fcbef7c4ab2fce90a4cd638eb553
IEDL.DBID RIE
IngestDate Wed Aug 14 05:40:32 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-1eb2b6376841b8a7106ec7e11fa3b1ac82448fcbef7c4ab2fce90a4cd638eb553
PageCount 7
ParticipantIDs ieee_primary_10610987
PublicationCentury 2000
PublicationDate 2024-May-13
PublicationDateYYYYMMDD 2024-05-13
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-13
  day: 13
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9021674
Snippet Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Collision avoidance
Convex functions
Hardware
Microcontrollers
Predictive control
Robots
Trajectory tracking
Title TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers
URI https://ieeexplore.ieee.org/document/10610987
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7TNW2Tdt6kOOZgY8gGu40kfYHh6GR0h_nX-5K2ioLgrYTSlpcm731533sfIQ9KgpU21CziyrLE1flg1CqZcPpvGDHY0Df1mUzlaJGMl2LZFKv7WhgA8OQzCNylz-UXW7N3R2V9B19CBMkd0sH_rC7WajhbON5_yV-fRMqTFGFflATt3T90U7zbGJ6QafvCmi3yFuwrHZiPX70Y__1Fp6T3XaFHZ1--54wcQXlOxvN1eZjM8kfqFM42bLZzWRi3n9G8ZqTTbUnbA3vmtDq9QgQUdOJ4eQ1tfYMRYY8shs_zfMQarQS25qmsGEeErGXs0mpcZwrjBgkmBc6tijVXJkM3nlmjwaYmUTqyBgahSkyB6w-0EPEF6ZbbEi4JjaJBIaw0iCzjREQKH2cytOpAZIXJTHFFes4Qq_e6HcaqtcH1H-M35NjNh0u58_iWdKvdHu7Qk1f63s_gJ9yHn7k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJve_CarmmTtPMmxbHNdQzZYLeRpAkMRzdGd9C_3pe0VRQEb6UNbXkh-d7L-977EHoQXBtuAolDIgymts4HvFaOmdV_A4_BBK6pTzbm_Rkdztm8LlZ3tTBaa0c-0769dLn8fK129qisY8OXAILkfXQAwE9ZVa5Vs7bgSWeQvj6xmNAYAr-Q-s34H8opDjh6x2jcfLLii7z5u1L66uNXN8Z__9MJan_X6HmTL_Q5RXu6OEPD6bJ4zybpo2c1zlZ4srV5GLujeWnFSffWhdcc2WOr1uk0InTuZZaZVxPXV-ATttGs9zxN-7hWS8BLEvMSE4iRJY9sYo3IRIDnwLWKNSFGRJIIlQCQJ0ZJbWJFhQyN0t1AUJXDCtSSsegctYp1oS-QF4bdnBmuILaMKAsFvE4lYNUuS3KVqPwSta0hFpuqIcaiscHVH_fv0WF_mo0Wo8H45Rod2bmxCXgS3aBWud3pW8D1Ut652fwEaKmjBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=TinyMPC%3A+Model-Predictive+Control+on+Resource-Constrained+Microcontrollers&rft.au=Nguyen%2C+Khai&rft.au=Schoedel%2C+Sam&rft.au=Alavilli%2C+Anoushka&rft.au=Plancher%2C+Brian&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICRA57147.2024.10610987&rft.externalDocID=10610987