Multiview Machine Learning Classification of Tooth Extraction in Orthodontics Using Intraoral Scans

Orthodontic treatment planning often involves de-ciding whether to extract teeth, a critical and irreversible decision. Integrating machine learning (ML) can enhance decision-making. This study proposes using Intraoral Scans (IOS) 3D models to predict extraction/non-extraction binary decisions with...

Full description

Saved in:
Bibliographic Details
Published inProceedings : annual International Computer Software and Applications Conference pp. 1977 - 1982
Main Authors de Azevedo Gomes, Carlos Falcao, de Araujo, Adriel Silva, Ahmad, Sunna Imtiaz, Magnaguagno, Mauricio Cecilio, Teixeira, Vinicius Crisosthemos, Singh Rajapuri, Anushri, Roederer, Quinn, Griebler, Dalvan, Dutra, Vinicius, Turkkahraman, Hakan, Pinho, Marcio Sarroglia
Format Conference Proceeding
LanguageEnglish
Published IEEE 02.07.2024
Subjects
Online AccessGet full text
ISSN2836-3795
DOI10.1109/COMPSAC61105.2024.00316

Cover

Abstract Orthodontic treatment planning often involves de-ciding whether to extract teeth, a critical and irreversible decision. Integrating machine learning (ML) can enhance decision-making. This study proposes using Intraoral Scans (IOS) 3D models to predict extraction/non-extraction binary decisions with ML models. We leverage a multiview approach, using images taken from multiple points of view of the 3D model. The methodology involved a dataset composed of preprocessed IOS from 181 subjects and an experimental procedure that evaluated multiple ML models in their ability to classify subjects using either grayscale pixel intensities or radiomic features. The results indicated that a logistic model applied to the radiomic features from the back and frontal views of the 3D models was one of the best model candidates, achieving a test accuracy of 70 % and F1 score of. 73 and. 65 for non-extraction and extraction cases, respectively. Overall, these findings indicate that a multiview approach to IOS 3D models can be used to predict extraction/non-extraction decisions. In addition, the results suggest that radiomic features provide useful information in the analysis of IOS data.
AbstractList Orthodontic treatment planning often involves de-ciding whether to extract teeth, a critical and irreversible decision. Integrating machine learning (ML) can enhance decision-making. This study proposes using Intraoral Scans (IOS) 3D models to predict extraction/non-extraction binary decisions with ML models. We leverage a multiview approach, using images taken from multiple points of view of the 3D model. The methodology involved a dataset composed of preprocessed IOS from 181 subjects and an experimental procedure that evaluated multiple ML models in their ability to classify subjects using either grayscale pixel intensities or radiomic features. The results indicated that a logistic model applied to the radiomic features from the back and frontal views of the 3D models was one of the best model candidates, achieving a test accuracy of 70 % and F1 score of. 73 and. 65 for non-extraction and extraction cases, respectively. Overall, these findings indicate that a multiview approach to IOS 3D models can be used to predict extraction/non-extraction decisions. In addition, the results suggest that radiomic features provide useful information in the analysis of IOS data.
Author Magnaguagno, Mauricio Cecilio
Teixeira, Vinicius Crisosthemos
Griebler, Dalvan
de Araujo, Adriel Silva
Singh Rajapuri, Anushri
Ahmad, Sunna Imtiaz
Dutra, Vinicius
Turkkahraman, Hakan
Pinho, Marcio Sarroglia
Roederer, Quinn
de Azevedo Gomes, Carlos Falcao
Author_xml – sequence: 1
  givenname: Carlos Falcao
  surname: de Azevedo Gomes
  fullname: de Azevedo Gomes, Carlos Falcao
  email: gomes.carlos86@edu.pucrs.br
  organization: School of Technology, Pontifical Catholic University of Rio Grande do Sul,Porto Alegre,Brazil
– sequence: 2
  givenname: Adriel Silva
  surname: de Araujo
  fullname: de Araujo, Adriel Silva
  email: adriel.araujo@edu.pucrs.br
  organization: School of Technology, Pontifical Catholic University of Rio Grande do Sul,Porto Alegre,Brazil
– sequence: 3
  givenname: Sunna Imtiaz
  surname: Ahmad
  fullname: Ahmad, Sunna Imtiaz
  email: mauricio.magnaguagno@acad.pucrs.br
  organization: School of Dentistry, Indiana University,Indianapolis,USA
– sequence: 4
  givenname: Mauricio Cecilio
  surname: Magnaguagno
  fullname: Magnaguagno, Mauricio Cecilio
  email: vinicius.teixeira.002@acad.pucrs.br
  organization: School of Technology, Pontifical Catholic University of Rio Grande do Sul,Porto Alegre,Brazil
– sequence: 5
  givenname: Vinicius Crisosthemos
  surname: Teixeira
  fullname: Teixeira, Vinicius Crisosthemos
  email: siahamad@iu.edu
  organization: School of Technology, Pontifical Catholic University of Rio Grande do Sul,Porto Alegre,Brazil
– sequence: 6
  givenname: Anushri
  surname: Singh Rajapuri
  fullname: Singh Rajapuri, Anushri
  email: anraja@iu.edu
  organization: School of Dentistry, Indiana University,Indianapolis,USA
– sequence: 7
  givenname: Quinn
  surname: Roederer
  fullname: Roederer, Quinn
  email: jqroederer@iu.edu
  organization: School of Dentistry, Indiana University,Indianapolis,USA
– sequence: 8
  givenname: Dalvan
  surname: Griebler
  fullname: Griebler, Dalvan
  email: dalvan.griebler@pucrs.br
  organization: School of Technology, Pontifical Catholic University of Rio Grande do Sul,Porto Alegre,Brazil
– sequence: 9
  givenname: Vinicius
  surname: Dutra
  fullname: Dutra, Vinicius
  email: vidutra@iu.edu
  organization: School of Dentistry, Indiana University,Indianapolis,USA
– sequence: 10
  givenname: Hakan
  surname: Turkkahraman
  fullname: Turkkahraman, Hakan
  email: haturk@iu.edu
  organization: School of Dentistry, Indiana University,Indianapolis,USA
– sequence: 11
  givenname: Marcio Sarroglia
  surname: Pinho
  fullname: Pinho, Marcio Sarroglia
  email: marcio.pinho@pucrs.br
  organization: School of Technology, Pontifical Catholic University of Rio Grande do Sul,Porto Alegre,Brazil
BookMark eNotj9tKAzEYhKMo2Na-gWBeYGsOm3-zl2WptdBSoe11yWb_tZE1kU08vb3r4WqY4ZuBGZMLHzwScsvZjHNW3lXbzeNuXsFg1Ewwkc8YkxzOyLQsSi0VkwWUoM_JSGgJmSxKdUXGMT4PGGglRsRu3rrk3h1-0I2xJ-eRrtH03vknWnUmRtc6a5ILnoaW7kNIJ7r4TL2xv5nzdNunU2iCT85Geog_xZUfgNCbju6s8fGaXLamizj91wk53C_21UO23i5X1XydOV5AyjiKGjQCbwEkqEJpg6BLyZXNeVNz2_BaG444vM2xztu8Nq1gSpoGpOIoJ-Tmb9ch4vG1dy-m_zpyBlJKoeQ3LBNaMg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/COMPSAC61105.2024.00316
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350376968
EISSN 2836-3795
EndPage 1982
ExternalDocumentID 10633325
Genre orig-research
GrantInformation_xml – fundername: Coordenacao de Aperfeiçoamento de Pessoal de Nivel Superior - Brasil (CAPES)
  funderid: 10.13039/501100002322
GroupedDBID 6IE
6IH
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i176t-1e2b68e61f66365758ae689315c41db1cd1b8a1ee1104eb4f4baf2053ad6351e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:02:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-1e2b68e61f66365758ae689315c41db1cd1b8a1ee1104eb4f4baf2053ad6351e3
PageCount 6
ParticipantIDs ieee_primary_10633325
PublicationCentury 2000
PublicationDate 2024-July-2
PublicationDateYYYYMMDD 2024-07-02
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-2
  day: 02
PublicationDecade 2020
PublicationTitle Proceedings : annual International Computer Software and Applications Conference
PublicationTitleAbbrev COMPSAC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0036852
Score 1.8769234
Snippet Orthodontic treatment planning often involves de-ciding whether to extract teeth, a critical and irreversible decision. Integrating machine learning (ML) can...
SourceID ieee
SourceType Publisher
StartPage 1977
SubjectTerms Accuracy
Gray-scale
intraoral scans
Machine learning
multi view
orthodontics
Predictive models
Solid modeling
Three-dimensional displays
tooth extraction
treatment planning
Visualization
Title Multiview Machine Learning Classification of Tooth Extraction in Orthodontics Using Intraoral Scans
URI https://ieeexplore.ieee.org/document/10633325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT57qo-KbPXhN7SabTXqU0lKFPsAWeiv7mEgREikpiL_emU2iIgjeksCyYWcnM9n5vm8Yu8OU2klps0Cq0AUyRZ8bYCIQZKnrg8WYXulsT2dqspJP63hdk9U9FwYAPPgMenTpa_musHs6KkMPV1EUhXGLtXCfVWSt5rNLQuphDeAS_cH9cD5dPD8MFd7E-BsYkkh2RF3NfzRR8TFk3GGzZvYKOvLa25emZz9-CTP--_WOWPebrscXX4HomB1AfsI6Tb8GXrvvKbOebUu1AD71GErgtbzqC_fNMQk25C3Fi4wvCzQiH72Xu4r7wLc5n--o33SRk7Yz92gD_kinw0Tzx3kw7HXZajxaDidB3WQh2IpElYGA0KgUlMgw96AqTKpBYRIjYiuFM8I6YVItAHAhJRiZSaOzEF1XO8xVBERnrJ0XOZwznkDm-sJaOv6UsVY61mBwuMIxSQrJBevSom3eKh2NTbNel388v2KHZDgPjg2vWbvc7eEGU4DS3HrTfwI67LHK
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20HvRUPyp-uwevqd1ks0mPUlpabdqCLfRWspuJFCGRkoL4653ZJCqC4C0JbDbsZjKTmffeMHaHIXUipUkdqdzEkSHaXBcDAScNkw4Y9OmlznY0UcOFfFz6y4qsbrkwAGDBZ9CmQ1vLT3KzpVQZWrjyPM_1d9ke3cMv6Vr1h5ek1N0KwiU63fveNJo9P_QUnvj4I-iSTLZHfc1_tFGxXmTQZJN6_hI88treFrptPn5JM_77AQ9Z65uwx2dfruiI7UB2zJp1xwZeGfAJM5ZvS9UAHlkUJfBKYPWF2_aYBByye8XzlM9z3Ebefy82JfuBrzM-3VDH6TwjdWdu8QZ8RPlhIvrjPOj4Wmwx6M97Q6dqs-CsRaAKR4CrVQhKpBh9UB0mjEFhGCN8I0WihUmEDmMBgAspQctU6jh10XjjBKMVAd4pa2R5BmeMB5AmHWEMJUClH6vYj0HjcIVjghCCc9aiRVu9lUoaq3q9Lv64fsv2h_NovBqPJk-X7IA20UJl3SvWKDZbuMaAoNA39jX4BLVdtRc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%3A+annual+International+Computer+Software+and+Applications+Conference&rft.atitle=Multiview+Machine+Learning+Classification+of+Tooth+Extraction+in+Orthodontics+Using+Intraoral+Scans&rft.au=de+Azevedo+Gomes%2C+Carlos+Falcao&rft.au=de+Araujo%2C+Adriel+Silva&rft.au=Ahmad%2C+Sunna+Imtiaz&rft.au=Magnaguagno%2C+Mauricio+Cecilio&rft.date=2024-07-02&rft.pub=IEEE&rft.eissn=2836-3795&rft.spage=1977&rft.epage=1982&rft_id=info:doi/10.1109%2FCOMPSAC61105.2024.00316&rft.externalDocID=10633325