The Benefits of Electromagnetic Information Theory for Channel Estimation

Electromagnetic information theory (EIT) is an emerging interdisciplinary subject that integrates classical Maxwell electromagnetics and Shannon information theory. The goal of EIT is to uncover the information transmission mechanisms from an electromagnetic (EM) perspective in wireless systems. Exi...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Communications (2003) pp. 4869 - 4874
Main Authors Zhu, Jieao, Su, Xiaofeng, Wan, Zhongzhichao, Dai, Linglong, Cui, Tie Jun
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.06.2024
Subjects
Online AccessGet full text
ISSN1938-1883
DOI10.1109/ICC51166.2024.10622245

Cover

Loading…
Abstract Electromagnetic information theory (EIT) is an emerging interdisciplinary subject that integrates classical Maxwell electromagnetics and Shannon information theory. The goal of EIT is to uncover the information transmission mechanisms from an electromagnetic (EM) perspective in wireless systems. Existing works on EIT are mainly focused on the analysis of degrees-of-freedom (DoF), system capacity, and characteristics of the electromagnetic channel. However, these works do not clarify whether EIT can improve wireless communication systems. To answer this question, in this paper, we provide a novel example of how to improve channel estimators by integrating EM knowledge into the classical MMSE channel estimator. Specifically, the EM knowledge is first encoded into a spatial correlation function (SCF) of the channel, which we term the EM kernel. This EM kernel plays the role of side information to the channel estimator. Since the EM kernel takes the form of Gaussian processes (GP), we propose the EIT-based Gaussian process regression (EIT-GPR) to derive the channel estimations. Furthermore, we propose EM kernel learning to fit the EM kernel to channel observations. Simulation results show that EIT benefits the channel estimator and enables it to outperform traditional isotropic MMSE algorithm, thus proving the practical values of EIT.
AbstractList Electromagnetic information theory (EIT) is an emerging interdisciplinary subject that integrates classical Maxwell electromagnetics and Shannon information theory. The goal of EIT is to uncover the information transmission mechanisms from an electromagnetic (EM) perspective in wireless systems. Existing works on EIT are mainly focused on the analysis of degrees-of-freedom (DoF), system capacity, and characteristics of the electromagnetic channel. However, these works do not clarify whether EIT can improve wireless communication systems. To answer this question, in this paper, we provide a novel example of how to improve channel estimators by integrating EM knowledge into the classical MMSE channel estimator. Specifically, the EM knowledge is first encoded into a spatial correlation function (SCF) of the channel, which we term the EM kernel. This EM kernel plays the role of side information to the channel estimator. Since the EM kernel takes the form of Gaussian processes (GP), we propose the EIT-based Gaussian process regression (EIT-GPR) to derive the channel estimations. Furthermore, we propose EM kernel learning to fit the EM kernel to channel observations. Simulation results show that EIT benefits the channel estimator and enables it to outperform traditional isotropic MMSE algorithm, thus proving the practical values of EIT.
Author Zhu, Jieao
Dai, Linglong
Cui, Tie Jun
Su, Xiaofeng
Wan, Zhongzhichao
Author_xml – sequence: 1
  givenname: Jieao
  surname: Zhu
  fullname: Zhu, Jieao
  email: zja21@mails.tsinghua.edu.cn
  organization: Tsinghua University,Department of Electronic Engineering,Beijing,China,100084
– sequence: 2
  givenname: Xiaofeng
  surname: Su
  fullname: Su, Xiaofeng
  email: suxf@tsinghua.edu.cn
  organization: Tsinghua University,Department of Electronic Engineering,Beijing,China,100084
– sequence: 3
  givenname: Zhongzhichao
  surname: Wan
  fullname: Wan, Zhongzhichao
  email: wzzc20@mails.tsinghua.edu.cn
  organization: Tsinghua University,Department of Electronic Engineering,Beijing,China,100084
– sequence: 4
  givenname: Linglong
  surname: Dai
  fullname: Dai, Linglong
  email: daill@tsinghua.edu.cn
  organization: Tsinghua University,Department of Electronic Engineering,Beijing,China,100084
– sequence: 5
  givenname: Tie Jun
  surname: Cui
  fullname: Cui, Tie Jun
  email: tjcui@seu.edu.cn
  organization: Southeast University,State Key Laboratory of Millimeter Waves,China
BookMark eNo1T81Kw0AYXEXBtvYNRPYFEvfb_z1qiBooeKnnspt8ayPpRpK99O0NVE8DM8P8rMlNGhMS8gisBGDuqakqBaB1yRmXJTDNOZfqimydsWC4BceUdNdkBU7YAqwVd2Q9z9-MKe4ErEizPyJ9wYSxzzMdI60HbPM0nvxXwty3tElxnE4-92Oii3ecznQhaHX0KeFA6zn3F_We3EY_zLj9ww35fK331Xux-3hrqudd0YPRuQCPQXseDY9tx8IyEtGozgOTMTgbtTbBRtQctBQGjVBdCC5Ka1wbW4FiQx4uuT0iHn6mpX46H_6vi19rzFB2
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICC51166.2024.10622245
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728190549
1728190541
EISSN 1938-1883
EndPage 4874
ExternalDocumentID 10622245
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62288101
  funderid: 10.13039/501100001667
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i176t-1aeb6a2f72fcd0b172ee75da104fb98f667b8fe6216437e735dbb9f4879cfc3e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:30:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-1aeb6a2f72fcd0b172ee75da104fb98f667b8fe6216437e735dbb9f4879cfc3e3
PageCount 6
ParticipantIDs ieee_primary_10622245
PublicationCentury 2000
PublicationDate 2024-June-9
PublicationDateYYYYMMDD 2024-06-09
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-9
  day: 09
PublicationDecade 2020
PublicationTitle IEEE International Conference on Communications (2003)
PublicationTitleAbbrev ICC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0052931
Score 2.2727406
Snippet Electromagnetic information theory (EIT) is an emerging interdisciplinary subject that integrates classical Maxwell electromagnetics and Shannon information...
SourceID ieee
SourceType Publisher
StartPage 4869
SubjectTerms Channel estimation
Electromagnetic information theory (EIT)
Electromagnetics
Feature extraction
Gaussian process regression (GPR)
Gaussian processes
Kernel
kernel learning
spatial correlation function (SCF)
Time-varying channels
Wireless communication
Title The Benefits of Electromagnetic Information Theory for Channel Estimation
URI https://ieeexplore.ieee.org/document/10622245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEMcX25NefFV8sweviU2yj-zV0tIKFg8Weiv7mJWiplLTi5_e2Tx8geAtbAgJO8n8d7LzmyHkSiU6tcDR-3GpI-bRDypQELHMSpWD8tIGdvhuKsYzdjvn8wZWr1gYAKiSzyAOh9VevlvZTfhVhl-4QDljvEM6GLnVsFbrdjnqVtIgwElfXU8GA1xLiJCFkLK4vfJHD5VKQka7ZNrevM4ceYo3pYnt-6-6jP9-uj3S-6L16P2nDu2TLSgOyM63QoOHZIJvA71Bt-aX5RtdeTqsu9-86MciUIy0oZKClWiN61McoIE9KOCZDtER1Gd7ZDYaPgzGUdNEIVomUpRRosEInXqZeuv6BtcrAJI7jWGYNyr3QkiTexBpErbwQGbcGaM8xjHKeptBdkS6xaqAY0K1MZ7nqXQi8wyc0iwPFbxQ8p2wTMoT0guzsnit62Qs2gk5_WP8jGwH41SJV-qcdMv1Bi5Q4ktzWZn2A3TOppc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMctKAOw8CrijQfWlCbxI16pWrXQVgyt1K2ynTOqgBRBuvDpOefBS0JiixxFjnzx_e34fneEXKlQRxY4ej8udcAc-kEFCgIWW6kSUE5azw6PxqI_ZbczPqtg9YKFAYAi-Axa_rI4y0-XduV_leEMFyhnjK-TDRR-pkpcq3a8HJUrrCDgsK2uB50OriaEj0OIWKt-9kcVlUJEejtkXHdfxo48tla5adn3X5kZ__1-u6T5xevR-08l2iNrkO2T7W-pBg_IAL8HeoOOzS3yN7p0tFvWv3nWD5nnGGnFJXk70RLYp9hAPX2QwRPtoiso7zbJtNeddPpBVUYhWIRS5EGowQgdORk5m7YNrlgAJE81bsScUYkTQprEgYhCf4gHMuapMcrhTkZZZ2OID0kjW2ZwRKg2xvEkkqmIHYNUaZb4HF4o-qmwTMpj0vSjMn8pM2XM6wE5-aP9kmz2J6PhfDgY352SLW-oIgxLnZFG_rqCcxT83FwUZv4AY7Op5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Communications+%282003%29&rft.atitle=The+Benefits+of+Electromagnetic+Information+Theory+for+Channel+Estimation&rft.au=Zhu%2C+Jieao&rft.au=Su%2C+Xiaofeng&rft.au=Wan%2C+Zhongzhichao&rft.au=Dai%2C+Linglong&rft.date=2024-06-09&rft.pub=IEEE&rft.eissn=1938-1883&rft.spage=4869&rft.epage=4874&rft_id=info:doi/10.1109%2FICC51166.2024.10622245&rft.externalDocID=10622245