The Benefits of Electromagnetic Information Theory for Channel Estimation
Electromagnetic information theory (EIT) is an emerging interdisciplinary subject that integrates classical Maxwell electromagnetics and Shannon information theory. The goal of EIT is to uncover the information transmission mechanisms from an electromagnetic (EM) perspective in wireless systems. Exi...
Saved in:
Published in | IEEE International Conference on Communications (2003) pp. 4869 - 4874 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1938-1883 |
DOI | 10.1109/ICC51166.2024.10622245 |
Cover
Loading…
Abstract | Electromagnetic information theory (EIT) is an emerging interdisciplinary subject that integrates classical Maxwell electromagnetics and Shannon information theory. The goal of EIT is to uncover the information transmission mechanisms from an electromagnetic (EM) perspective in wireless systems. Existing works on EIT are mainly focused on the analysis of degrees-of-freedom (DoF), system capacity, and characteristics of the electromagnetic channel. However, these works do not clarify whether EIT can improve wireless communication systems. To answer this question, in this paper, we provide a novel example of how to improve channel estimators by integrating EM knowledge into the classical MMSE channel estimator. Specifically, the EM knowledge is first encoded into a spatial correlation function (SCF) of the channel, which we term the EM kernel. This EM kernel plays the role of side information to the channel estimator. Since the EM kernel takes the form of Gaussian processes (GP), we propose the EIT-based Gaussian process regression (EIT-GPR) to derive the channel estimations. Furthermore, we propose EM kernel learning to fit the EM kernel to channel observations. Simulation results show that EIT benefits the channel estimator and enables it to outperform traditional isotropic MMSE algorithm, thus proving the practical values of EIT. |
---|---|
AbstractList | Electromagnetic information theory (EIT) is an emerging interdisciplinary subject that integrates classical Maxwell electromagnetics and Shannon information theory. The goal of EIT is to uncover the information transmission mechanisms from an electromagnetic (EM) perspective in wireless systems. Existing works on EIT are mainly focused on the analysis of degrees-of-freedom (DoF), system capacity, and characteristics of the electromagnetic channel. However, these works do not clarify whether EIT can improve wireless communication systems. To answer this question, in this paper, we provide a novel example of how to improve channel estimators by integrating EM knowledge into the classical MMSE channel estimator. Specifically, the EM knowledge is first encoded into a spatial correlation function (SCF) of the channel, which we term the EM kernel. This EM kernel plays the role of side information to the channel estimator. Since the EM kernel takes the form of Gaussian processes (GP), we propose the EIT-based Gaussian process regression (EIT-GPR) to derive the channel estimations. Furthermore, we propose EM kernel learning to fit the EM kernel to channel observations. Simulation results show that EIT benefits the channel estimator and enables it to outperform traditional isotropic MMSE algorithm, thus proving the practical values of EIT. |
Author | Zhu, Jieao Dai, Linglong Cui, Tie Jun Su, Xiaofeng Wan, Zhongzhichao |
Author_xml | – sequence: 1 givenname: Jieao surname: Zhu fullname: Zhu, Jieao email: zja21@mails.tsinghua.edu.cn organization: Tsinghua University,Department of Electronic Engineering,Beijing,China,100084 – sequence: 2 givenname: Xiaofeng surname: Su fullname: Su, Xiaofeng email: suxf@tsinghua.edu.cn organization: Tsinghua University,Department of Electronic Engineering,Beijing,China,100084 – sequence: 3 givenname: Zhongzhichao surname: Wan fullname: Wan, Zhongzhichao email: wzzc20@mails.tsinghua.edu.cn organization: Tsinghua University,Department of Electronic Engineering,Beijing,China,100084 – sequence: 4 givenname: Linglong surname: Dai fullname: Dai, Linglong email: daill@tsinghua.edu.cn organization: Tsinghua University,Department of Electronic Engineering,Beijing,China,100084 – sequence: 5 givenname: Tie Jun surname: Cui fullname: Cui, Tie Jun email: tjcui@seu.edu.cn organization: Southeast University,State Key Laboratory of Millimeter Waves,China |
BookMark | eNo1T81Kw0AYXEXBtvYNRPYFEvfb_z1qiBooeKnnspt8ayPpRpK99O0NVE8DM8P8rMlNGhMS8gisBGDuqakqBaB1yRmXJTDNOZfqimydsWC4BceUdNdkBU7YAqwVd2Q9z9-MKe4ErEizPyJ9wYSxzzMdI60HbPM0nvxXwty3tElxnE4-92Oii3ecznQhaHX0KeFA6zn3F_We3EY_zLj9ww35fK331Xux-3hrqudd0YPRuQCPQXseDY9tx8IyEtGozgOTMTgbtTbBRtQctBQGjVBdCC5Ka1wbW4FiQx4uuT0iHn6mpX46H_6vi19rzFB2 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICC51166.2024.10622245 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781728190549 1728190541 |
EISSN | 1938-1883 |
EndPage | 4874 |
ExternalDocumentID | 10622245 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62288101 funderid: 10.13039/501100001667 |
GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i176t-1aeb6a2f72fcd0b172ee75da104fb98f667b8fe6216437e735dbb9f4879cfc3e3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:30:58 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-1aeb6a2f72fcd0b172ee75da104fb98f667b8fe6216437e735dbb9f4879cfc3e3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10622245 |
PublicationCentury | 2000 |
PublicationDate | 2024-June-9 |
PublicationDateYYYYMMDD | 2024-06-09 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-9 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Conference on Communications (2003) |
PublicationTitleAbbrev | ICC |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0052931 |
Score | 2.2727406 |
Snippet | Electromagnetic information theory (EIT) is an emerging interdisciplinary subject that integrates classical Maxwell electromagnetics and Shannon information... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4869 |
SubjectTerms | Channel estimation Electromagnetic information theory (EIT) Electromagnetics Feature extraction Gaussian process regression (GPR) Gaussian processes Kernel kernel learning spatial correlation function (SCF) Time-varying channels Wireless communication |
Title | The Benefits of Electromagnetic Information Theory for Channel Estimation |
URI | https://ieeexplore.ieee.org/document/10622245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEMcX25NefFV8sweviU2yj-zV0tIKFg8Weiv7mJWiplLTi5_e2Tx8geAtbAgJO8n8d7LzmyHkSiU6tcDR-3GpI-bRDypQELHMSpWD8tIGdvhuKsYzdjvn8wZWr1gYAKiSzyAOh9VevlvZTfhVhl-4QDljvEM6GLnVsFbrdjnqVtIgwElfXU8GA1xLiJCFkLK4vfJHD5VKQka7ZNrevM4ceYo3pYnt-6-6jP9-uj3S-6L16P2nDu2TLSgOyM63QoOHZIJvA71Bt-aX5RtdeTqsu9-86MciUIy0oZKClWiN61McoIE9KOCZDtER1Gd7ZDYaPgzGUdNEIVomUpRRosEInXqZeuv6BtcrAJI7jWGYNyr3QkiTexBpErbwQGbcGaM8xjHKeptBdkS6xaqAY0K1MZ7nqXQi8wyc0iwPFbxQ8p2wTMoT0guzsnit62Qs2gk5_WP8jGwH41SJV-qcdMv1Bi5Q4ktzWZn2A3TOppc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMctKAOw8CrijQfWlCbxI16pWrXQVgyt1K2ynTOqgBRBuvDpOefBS0JiixxFjnzx_e34fneEXKlQRxY4ej8udcAc-kEFCgIWW6kSUE5azw6PxqI_ZbczPqtg9YKFAYAi-Axa_rI4y0-XduV_leEMFyhnjK-TDRR-pkpcq3a8HJUrrCDgsK2uB50OriaEj0OIWKt-9kcVlUJEejtkXHdfxo48tla5adn3X5kZ__1-u6T5xevR-08l2iNrkO2T7W-pBg_IAL8HeoOOzS3yN7p0tFvWv3nWD5nnGGnFJXk70RLYp9hAPX2QwRPtoiso7zbJtNeddPpBVUYhWIRS5EGowQgdORk5m7YNrlgAJE81bsScUYkTQprEgYhCf4gHMuapMcrhTkZZZ2OID0kjW2ZwRKg2xvEkkqmIHYNUaZb4HF4o-qmwTMpj0vSjMn8pM2XM6wE5-aP9kmz2J6PhfDgY352SLW-oIgxLnZFG_rqCcxT83FwUZv4AY7Op5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Communications+%282003%29&rft.atitle=The+Benefits+of+Electromagnetic+Information+Theory+for+Channel+Estimation&rft.au=Zhu%2C+Jieao&rft.au=Su%2C+Xiaofeng&rft.au=Wan%2C+Zhongzhichao&rft.au=Dai%2C+Linglong&rft.date=2024-06-09&rft.pub=IEEE&rft.eissn=1938-1883&rft.spage=4869&rft.epage=4874&rft_id=info:doi/10.1109%2FICC51166.2024.10622245&rft.externalDocID=10622245 |