Ensemble of Semantic Segmentation Models for Oral Epithelial Dysplasia Images

Early detection of potentially malignant disorders such as oral epithelial dysplasia (OED) is important for preventing oral cancer. Semantic segmentation of nuclei in histopathological images provides relevant insights for pathologists. CNN-based methods have shown promise in improving histological...

Full description

Saved in:
Bibliographic Details
Published inProceedings - Brazilian Symposium on Computer Graphics and Image Processing pp. 1 - 6
Main Authors Silva, Adriano B., Tosta, Thaina A. A., Neves, Leandro A., Martins, Alessandro S., De Faria, Paulo R., Do Nascimento, Marcelo Z.
Format Conference Proceeding
LanguageEnglish
Published IEEE 30.09.2024
Subjects
Online AccessGet full text
ISSN2377-5416
DOI10.1109/SIBGRAPI62404.2024.10716304

Cover

Loading…
Abstract Early detection of potentially malignant disorders such as oral epithelial dysplasia (OED) is important for preventing oral cancer. Semantic segmentation of nuclei in histopathological images provides relevant insights for pathologists. CNN-based methods have shown promise in improving histological lesion detection and segmentation processes, but achieving results with significant values in terms accuracy metrics remains a challenging task. This paper presents an ensemble approach to enhance the performance of semantic segmentation for nuclei in OED histopathology images. Six CNN models were employed, and their outputs were associated using three ensemble strategies: simple averaging, weighted averaging, and majority voting. To further enhance model robustness, a data augmentation stage was assessed. The proposed ensemble, combined with an image augmentation strategy, achieved accuracy and Dice coefficient values of 93.41 % and 0.88, respectively, on OED images. Analysis of the OED grades showed values ranging from 91.14% to 95.24 % and 0.87 to 0.90 for accuracy and Dice coefficient, respectively. These values show an improvement over the CNN segmentation models. The analysis of segmentation performance with the OED grade images is another significant contribution of this study that addresses a gap in the literature. A validation stage on three publicly available datasets demonstrated that our approach is on par with state-of-the-art methods.
AbstractList Early detection of potentially malignant disorders such as oral epithelial dysplasia (OED) is important for preventing oral cancer. Semantic segmentation of nuclei in histopathological images provides relevant insights for pathologists. CNN-based methods have shown promise in improving histological lesion detection and segmentation processes, but achieving results with significant values in terms accuracy metrics remains a challenging task. This paper presents an ensemble approach to enhance the performance of semantic segmentation for nuclei in OED histopathology images. Six CNN models were employed, and their outputs were associated using three ensemble strategies: simple averaging, weighted averaging, and majority voting. To further enhance model robustness, a data augmentation stage was assessed. The proposed ensemble, combined with an image augmentation strategy, achieved accuracy and Dice coefficient values of 93.41 % and 0.88, respectively, on OED images. Analysis of the OED grades showed values ranging from 91.14% to 95.24 % and 0.87 to 0.90 for accuracy and Dice coefficient, respectively. These values show an improvement over the CNN segmentation models. The analysis of segmentation performance with the OED grade images is another significant contribution of this study that addresses a gap in the literature. A validation stage on three publicly available datasets demonstrated that our approach is on par with state-of-the-art methods.
Author De Faria, Paulo R.
Do Nascimento, Marcelo Z.
Martins, Alessandro S.
Silva, Adriano B.
Neves, Leandro A.
Tosta, Thaina A. A.
Author_xml – sequence: 1
  givenname: Adriano B.
  surname: Silva
  fullname: Silva, Adriano B.
  email: adriano.barbosa@ufu.br
  organization: Federal University of Uberlândia,Faculty of Computer Science
– sequence: 2
  givenname: Thaina A. A.
  surname: Tosta
  fullname: Tosta, Thaina A. A.
  organization: Science and Technology Institute, Federal University of São Paulo
– sequence: 3
  givenname: Leandro A.
  surname: Neves
  fullname: Neves, Leandro A.
  organization: São Paulo State University,Department of Computer Science and Statistics (DCCE)
– sequence: 4
  givenname: Alessandro S.
  surname: Martins
  fullname: Martins, Alessandro S.
  organization: Federal Institute of Triângulo Mineiro
– sequence: 5
  givenname: Paulo R.
  surname: De Faria
  fullname: De Faria, Paulo R.
  organization: Institute of Biomedical Science, Federal University of Uberlândia,Department of Histology and Morphology
– sequence: 6
  givenname: Marcelo Z.
  surname: Do Nascimento
  fullname: Do Nascimento, Marcelo Z.
  organization: Federal University of Uberlândia,Faculty of Computer Science
BookMark eNo1j0tPwkAURkejiYD8AxdNXBfvPDqPJSJiEwhGdE1u2zs4pg_S6YZ_D4m6Oidn8SXfmN20XUuMPXKYcQ7uaZc_rz7m77kWCtRMgFAzDoZrCeqKTZ1xVmYgjQapr9lISGPSTHF9x8Yx_gBw57Qdsc2yjdQUNSWdT3bUYDuE8iKHhtoBh9C1yaarqI6J7_pk22OdLI9h-KY6XPTlFI81xoBJ3uCB4j279VhHmv5xwr5el5-Lt3S9XeWL-ToN3Ogh5ZoyY4tKAYFDBdZjIRwvPGFmfIVghacSK1WBkGWGmRXg0dgSKm0uVU7Yw-9uIKL9sQ8N9qf9_315BmuCUzE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SIBGRAPI62404.2024.10716304
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350376036
EISSN 2377-5416
EndPage 6
ExternalDocumentID 10716304
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-16e578bd40e09a408fab291bfea57fda082fecad4d023c5a5820fa78c0d67d4d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:17:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-16e578bd40e09a408fab291bfea57fda082fecad4d023c5a5820fa78c0d67d4d3
PageCount 6
ParticipantIDs ieee_primary_10716304
PublicationCentury 2000
PublicationDate 2024-Sept.-30
PublicationDateYYYYMMDD 2024-09-30
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-30
  day: 30
PublicationDecade 2020
PublicationTitle Proceedings - Brazilian Symposium on Computer Graphics and Image Processing
PublicationTitleAbbrev SIBGRAPI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019968
Score 2.2699432
Snippet Early detection of potentially malignant disorders such as oral epithelial dysplasia (OED) is important for preventing oral cancer. Semantic segmentation of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Cancer
Data augmentation
Ensemble learning
Image segmentation
Instance segmentation
Lesions
Robustness
Semantic segmentation
Solid modeling
Title Ensemble of Semantic Segmentation Models for Oral Epithelial Dysplasia Images
URI https://ieeexplore.ieee.org/document/10716304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgBwQXtiJ2WYJrQhZnO7K0UKSWilKpt8qOx6giSasmPcDXM07SskhI3CxLkayZ2G_G4_eGkMs4chnXVV2B4GEwxm0jciE2HIm5g8UEc8ouEd2e_zBkjyNvVJPVSy4MAJSPz8DUw7KWL6fxQl-V4Q7H6N7V6p_rmLlVZK1VyQAD93CDXNQimleDzs3983W_4yNk6bsTh5nLz380UilxpL1NessVVM9H3sxFIcz445c447-XuEOaX5Q92l-B0S5Zg2yPbH1TG9wn3VaWQyoSoFNFB5CiTScxDl7Tmn-UUd0ZLckpBrL0ac4T2pppykaC_yi9e89nJeWSdlI8g_ImGbZbL7cPRt1NwZjYgV8Ytg-4O4VkFlgRZ1aouHAiWyjgXqAkx1hAQcwlkwjjscc9jA0UD8LYkn6As-4BaWTTDA4JDZhCHysLmBavcRWPXImJGpcB8CiM7CPS1JYZzyrBjPHSKMd_zJ-QTe2g6hnGKWkU8wWcIdYX4rz08Sdlb6hX
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQSCwXtiJ2LME1IYuzHVlaGmhLRVupt8qOx6giTasuB_h6xmlaFgmJm-VDZM3EfmPPvDeEXCWRy7jO6goED4MxbhuRC4nhSLw7WEwwJ-8SUW_41Q577Hrdgqyec2EAIC8-A1MP81y-HCYz_VSGOxyje1erf64h8Hv2nK61TBpg6B6uk8tCRvO6Fd8-vNw0Yx9BS7-eOMxcfOBHK5UcSSrbpLFYw7yA5M2cTYWZfPySZ_z3IndI6Yu0R5tLONolK5Dtka1veoP7pF7OJjAQKdChoi0YoFX7CQ5eBwUDKaO6N1o6oRjK0ucxT2l5pEkbKf6l9P59MspJlzQe4Ck0KZFOpdy-qxpFPwWjbwf-1LB9wP0pJLPAijizQsWFE9lCAfcCJTlGAwoSLplEIE887mF0oHgQJpb0A5x1D8hqNszgkNCAKfSysoBp-RpX8ciVeFXjMgAehZF9REraMr3RXDKjtzDK8R_zF2Sj2q7XerW48XRCNrWz5kUZp2R1Op7BGSL_VJzn_v4EXViroA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+Brazilian+Symposium+on+Computer+Graphics+and+Image+Processing&rft.atitle=Ensemble+of+Semantic+Segmentation+Models+for+Oral+Epithelial+Dysplasia+Images&rft.au=Silva%2C+Adriano+B.&rft.au=Tosta%2C+Thaina+A.+A.&rft.au=Neves%2C+Leandro+A.&rft.au=Martins%2C+Alessandro+S.&rft.date=2024-09-30&rft.pub=IEEE&rft.eissn=2377-5416&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSIBGRAPI62404.2024.10716304&rft.externalDocID=10716304