Age-Aware Edge Caching and Multicast Scheduling Using Deep Reinforcement Learning
The temporal nature of data in Internet of Things (IoT) networks necessitates periodic updates of cached content at edge devices, while multicasting dynamic content can enhance network efficiency. This paper addresses the challenge of joint cache updating and multicast scheduling in a cache-enabled,...
Saved in:
Published in | International Wireless Communications and Mobile Computing Conference (Online) pp. 909 - 914 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
27.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2376-6506 |
DOI | 10.1109/IWCMC61514.2024.10592333 |
Cover
Loading…
Abstract | The temporal nature of data in Internet of Things (IoT) networks necessitates periodic updates of cached content at edge devices, while multicasting dynamic content can enhance network efficiency. This paper addresses the challenge of joint cache updating and multicast scheduling in a cache-enabled, queue-equipped small base station (SBS) with limited cache capacity, which accesses a macro base station (MBS) to download (update) uncached (cached) content and serves requests through multicasting. We formulate a two-stage optimization problem to minimize the average age of information (AAoI) per request, subject to constrained average queueing delay and access rate. The first stage employs the Lyapunov drift-plus-penalty method at the SBS to schedule multicasting and downloading (updating) uncached (cached) content. The second stage, implemented at the MBS, leverages deep reinforcement learning (DRL) to determine the content replacement policy. Simulation results show that the DRL-based cache replacement policy yields up to 50%, 59%, and 60% improvements in AAoI compared to the maximum age, least-recently-used, and least-frequently-used baseline policies, respectively. |
---|---|
AbstractList | The temporal nature of data in Internet of Things (IoT) networks necessitates periodic updates of cached content at edge devices, while multicasting dynamic content can enhance network efficiency. This paper addresses the challenge of joint cache updating and multicast scheduling in a cache-enabled, queue-equipped small base station (SBS) with limited cache capacity, which accesses a macro base station (MBS) to download (update) uncached (cached) content and serves requests through multicasting. We formulate a two-stage optimization problem to minimize the average age of information (AAoI) per request, subject to constrained average queueing delay and access rate. The first stage employs the Lyapunov drift-plus-penalty method at the SBS to schedule multicasting and downloading (updating) uncached (cached) content. The second stage, implemented at the MBS, leverages deep reinforcement learning (DRL) to determine the content replacement policy. Simulation results show that the DRL-based cache replacement policy yields up to 50%, 59%, and 60% improvements in AAoI compared to the maximum age, least-recently-used, and least-frequently-used baseline policies, respectively. |
Author | Nauryzbayev, Galymzhan Dadlani, Aresh Khonsari, Ahmad Moradian, Masoumeh Hassanpour, Seyedeh Bahereh |
Author_xml | – sequence: 1 givenname: Seyedeh Bahereh surname: Hassanpour fullname: Hassanpour, Seyedeh Bahereh email: bahereh@ipm.ir organization: University of Tehran,School of Electrical and Computer Engineering, College of Engineering,Tehran,Iran – sequence: 2 givenname: Ahmad surname: Khonsari fullname: Khonsari, Ahmad email: a_khonsari@ut.ac.ir organization: University of Tehran,School of Electrical and Computer Engineering, College of Engineering,Tehran,Iran – sequence: 3 givenname: Masoumeh surname: Moradian fullname: Moradian, Masoumeh email: mmoradian@ipm.ir organization: Institute for Research in Fundamental Sciences (IPM),School of Computer Science,Tehran,Iran – sequence: 4 givenname: Aresh surname: Dadlani fullname: Dadlani, Aresh email: aresh.dadlani@nu.edu.kz organization: University of Alberta,Department of Computing Science,Edmonton,Canada – sequence: 5 givenname: Galymzhan surname: Nauryzbayev fullname: Nauryzbayev, Galymzhan email: galymzhan.nauryzbayev@nu.edu.kz organization: Nazarbayev University,Department of Electrical and Computer Engineering,Astana,Kazakhstan |
BookMark | eNo1kMtKw0AYRkdRsNa8gYt5gcS5ZS7LEqsWUsRLcVl-Z_6kI-m0JCni22tRN-dbHPgW55KcpV1CQihnBefM3SzeqmWleclVIZhQBWelE1LKE5I546wsmdRcaH5KJkIaneuS6QuSDcMHY0wKzo1QE_I0azGffUKPdB5apBX4TUwthRTo8tCN0cMw0he_wXDojmI1HHmLuKfPGFOz6z1uMY20RujTj7si5w10A2Z_OyWru_lr9ZDXj_eLalbnkRs95lzJxqNRBpQzhgmvGQMI78LYprGoUQZvhQvKOgVOmBK9teBKdMEq8EJOyfXvb0TE9b6PW-i_1v8V5DfXFFMD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IWCMC61514.2024.10592333 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350361261 |
EISSN | 2376-6506 |
EndPage | 914 |
ExternalDocumentID | 10592333 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i176t-143fce747a497702c600aadb278ff8e6e3dc829d4894a9275ec88a95e9d84ac23 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:03:21 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-143fce747a497702c600aadb278ff8e6e3dc829d4894a9275ec88a95e9d84ac23 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10592333 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-27 |
PublicationDateYYYYMMDD | 2024-05-27 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | International Wireless Communications and Mobile Computing Conference (Online) |
PublicationTitleAbbrev | IWCMC |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211724 |
Score | 2.264493 |
Snippet | The temporal nature of data in Internet of Things (IoT) networks necessitates periodic updates of cached content at edge devices, while multicasting dynamic... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 909 |
SubjectTerms | Age of information Base stations Deep reinforcement learning Delays edge cache updating Lyapunov optimization Multicast communication multicasting Schedules Simulation Wireless communication |
Title | Age-Aware Edge Caching and Multicast Scheduling Using Deep Reinforcement Learning |
URI | https://ieeexplore.ieee.org/document/10592333 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwFBRNTu2lW0p3dOjVjiMrlnwMbkJaSOgWmlvQ8mRKwQmpQ6FfX0mO0wUKvRmDQehh3rzRzAihK0hByYiRQBijAiqYDKSxP55MOFOJAsqlowZG42Q4obfT7nRtVvdeGADw4jMI3aM_y9dztXJUWdthARLHcQM17ORWmbU2hEpsRxlGaK3WidL2zXM2ylzHdtwJoWH9-Y-LVHwfGeyicb2CSj7yGq5KGaqPX-GM_17iHmp9Wfbw3aYZ7aMtKA7Qzre0wUN038sh6L2LJeC-zgFnlY4Si0Jj78NV4q3Ej7aK2snTc-zlBPgaYIEfwCesKk8m4nUoa95Ck0H_KRsG6xsVgpcOS8rAgiOjwE4QglrcFxFl4Y4QWhLGjeGQQKwVJ6mmPKUiJawLinORdiHVnApF4iPULOYFHCNMDcQuuKdLwFjIJThQMJG2s7nWTKvOCWq53ZktqtCMWb0xp3-8P0PbrkjuYJ6wc9Qslyu4sP2-lJe-zp_5uaq3 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA06H9QXbxPv5sHXdjNNm_Rx1I1Nt-Flw72NNPlSRNjG7BD89SbpOi8g-Fb6UEI-yne-k3NOELqCGGRaZ8QTWkuPCpZ6qTY_XhpxJiMJlKeWGuj1o_aQ3o7C0dKs7rwwAODEZ-DbR3eWr6ZyYamymsUCJAiCdbQRWjduYddaUSqBGWYYoaVepx7XOs9JL7E927InhPrlB35cpeI6SWsH9cs1FAKSV3-Rp778-BXP-O9F7qLql2kP36_a0R5ag8k-2v6WN3iAHhoZeI13MQfcVBngpFBSYjFR2DlxpXjL8ZOpo7IC9Qw7QQG-AZjhR3AZq9LRiXgZy5pV0bDVHCRtb3mngvdyzaLcM_BISzAzhKAG-dWJNIBHCJUSxrXmEEGgJCexojymIiYsBMm5iEOIFadCkuAQVSbTCRwhTDUENronJKAN6BIcKOi6MtO5UkzJ62NUtbsznhWxGeNyY07-eH-JNtuDXnfc7fTvTtGWLZg9pifsDFXy-QLOTffP0wtX808RMq3_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Wireless+Communications+and+Mobile+Computing+Conference+%28Online%29&rft.atitle=Age-Aware+Edge+Caching+and+Multicast+Scheduling+Using+Deep+Reinforcement+Learning&rft.au=Hassanpour%2C+Seyedeh+Bahereh&rft.au=Khonsari%2C+Ahmad&rft.au=Moradian%2C+Masoumeh&rft.au=Dadlani%2C+Aresh&rft.date=2024-05-27&rft.pub=IEEE&rft.eissn=2376-6506&rft.spage=909&rft.epage=914&rft_id=info:doi/10.1109%2FIWCMC61514.2024.10592333&rft.externalDocID=10592333 |